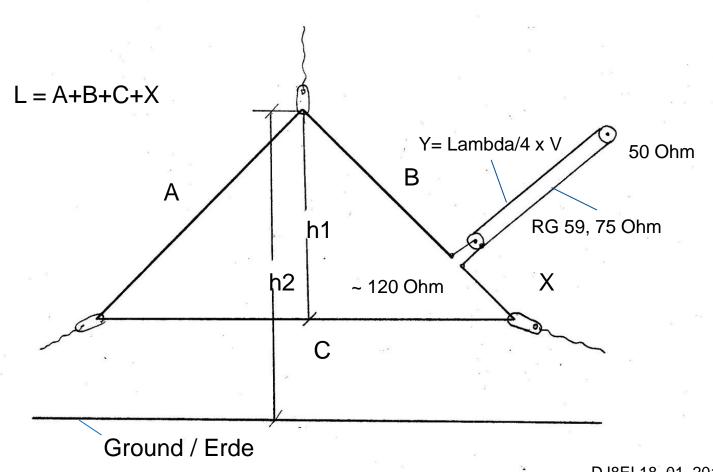
Delta Loop Antenne für Portabelbetrieb


DARC OV G09 2016

Dr. Hans E. Krüger, DJ8EI/PA8EI

G09 Delta Loop

- Zahlreiche Varianten von Ganzwellenschleifen in der Literatur
- Die G09 Ganzwellen Delta Loop ist eine Version von zahlreichen in der Literatur beschriebenen Varianten, die folgende Vorteile aufweist:
 - Nur ein Aufhängungspunkt, leichtgewichtig, gut für Portabelbetrieb
 - Auf Grund der speziellen Bauform flache Abstrahlung (25 30 Grad), besonders für DX Betrieb geeignet
 - Nahezu Rundstrahlcharakteristik
 - Monoband Antenne, über die gesamten Bänder von 20m aufwärts überstreicht die SWR 2 – Bandbreite jeweils das gesamte Band, kein Antennentuner erforderlich.
 - Gewinn gegenüber Dipol gering, aber signifikant besseres Signal bei DX Betrieb durch flaches Abstrahldiagramm
 - Die aufgenommenen atmosphärischen Störungen besonders in den Tropen – sind im Vergleich zum Dipol wesentlich geringer

Prinzipschaltbild der G09 - Delta Loop

DJ8EI 18_01_2015

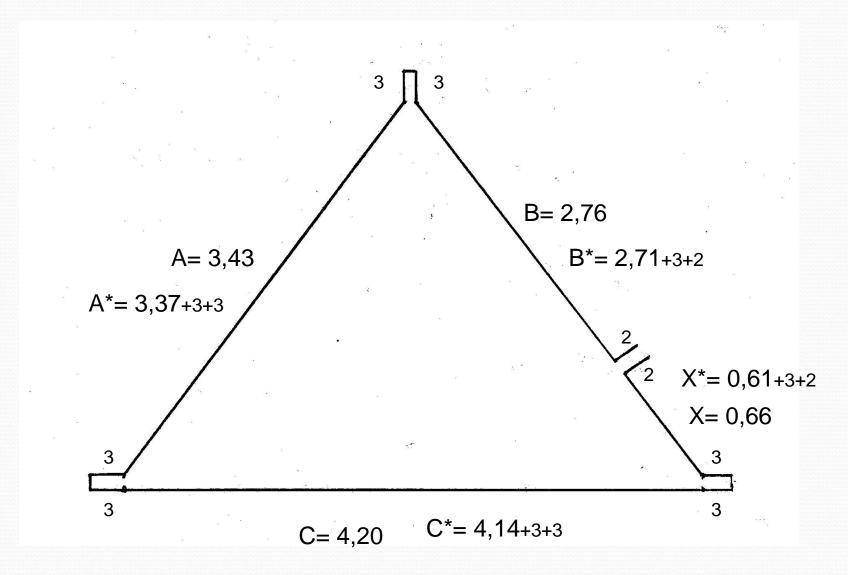
Umfang/Drahtlänge der Delta Loop

- Bei einem Draht Lambda/2 Dipol, rechnet man mit einem Verkürzungsfaktor < 1, üblicherweise mit ca. 0.97
- Grund dafür sind die langsamere Wellenausbreitung im Medium Draht gegenüber dem Vakuum und kapazitive Randeffekte an den Enden des gestreckten Dipols
- Bei Schleifenantennen rechnet man dagegen mit einem Verkürzungsfaktor >1, also einem Verlängerungsfaktor.

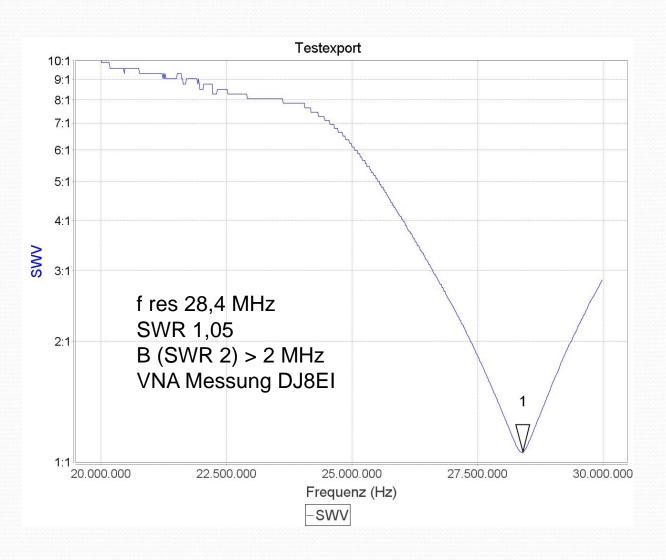
Umfang/Drahtlänge der Delta Loop

- Dies erklärt sich aus der Tatsache, dass es bei der Ganzwellenschleife keine offenen Enden gibt und damit keine Randeffekte.
- Weiterhin wird durch das Abwinkeln der Drähte ein Verlängerungseffekt durch die elektromagnetische Verkoppelung der gegenüberliegenden Leiterdrähte erzeugt.
- In der Literatur (Rothammel 13, Kap 14.2) wird der Verlängerungsfaktor unterschiedlich zwischen 1,01 und 1,03 angegeben, in anderen Quellen bis zu 1,07
- Eigene Messungen zeigen, dass bei unserer Delta Loop die optimalen Werte frequenzabhängig sind und zwischen 1,02 (7 MHz) und 1,05 (28 MHz) liegen

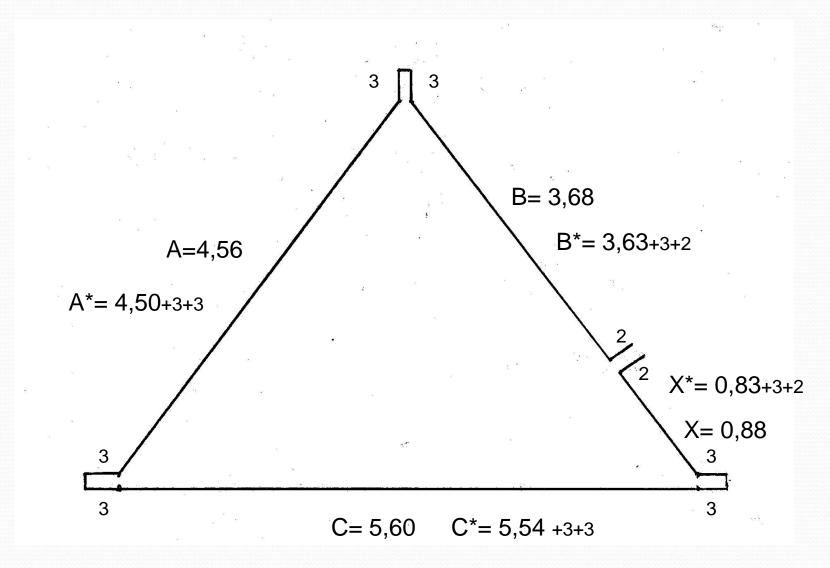
Einfluss der Aufbauhöhe und des Erdbodens

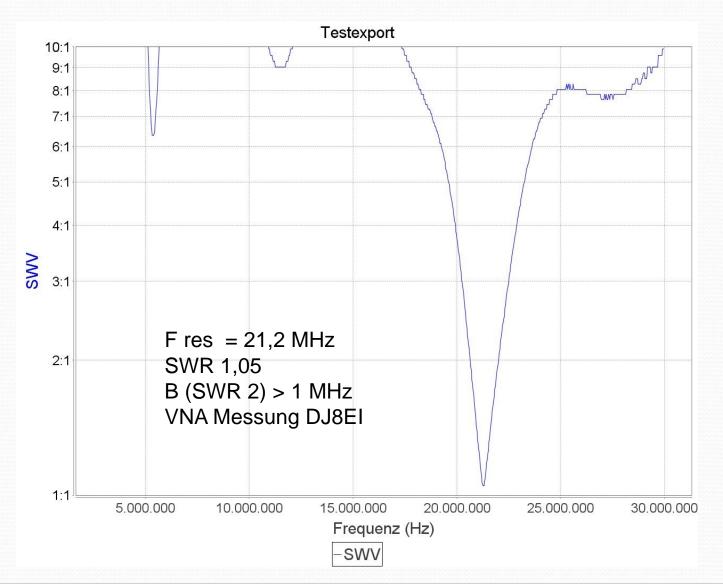

- Mit der Aufbauhöhe Höhe Basis C über Erdboden steigt die Resonanzfrequenz merklich
- Gewinn bleibt praktisch gleich
- Eingangswiderstand und Erhebungswinkel nehmen etwas ab. Dies ist vernachlässigbar.
- Beispiel: bei 2m Höhe Erhebungswinkel 20 °, bei 4m Höhe Erhebungswinkel 17 °
- Der vertikale Erhebungswinkel steigt mit schlechterer Bodenleitfähigkeit, der Gewinn sinkt
- Beispiel: schlechte Bodenqualität, Erhebungswinkel 26 °, G(dBi) = 1,6
- Salzwasser, Erhebungswinkel 9 °, G(dBi) = 6,8

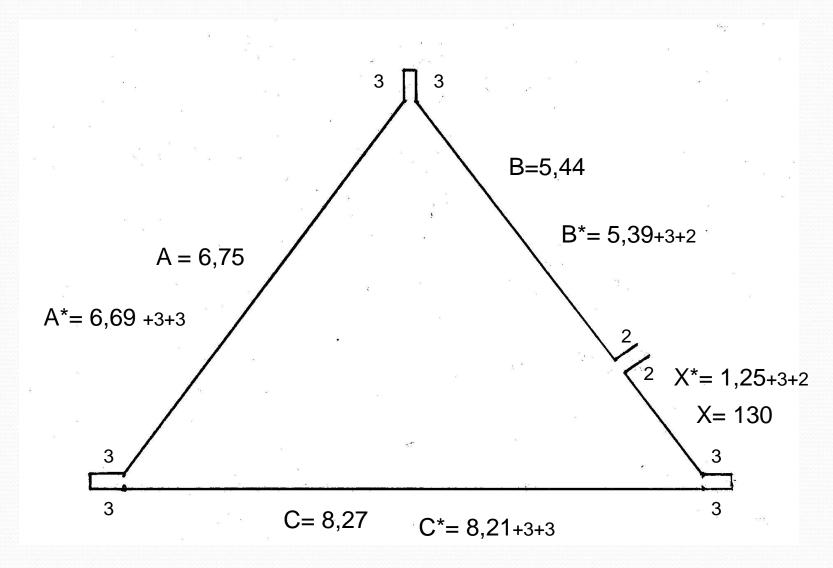
Quelle: DL4AAE, 03/2012, Internet

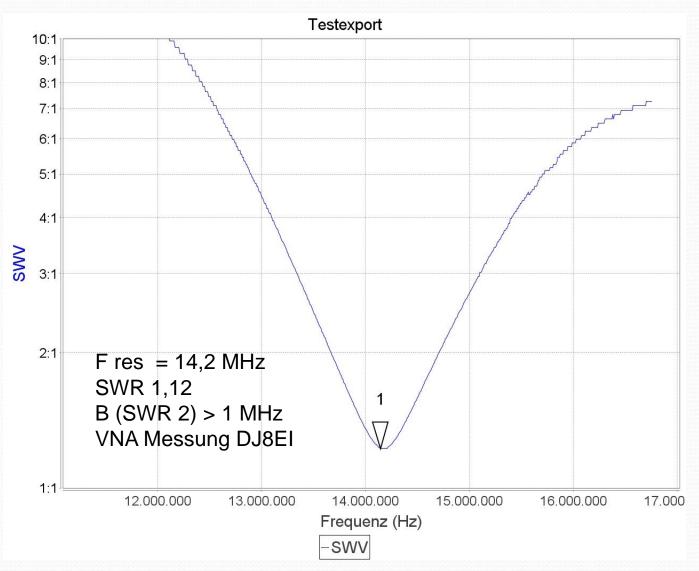

G09 Delta Loop Abmessungen

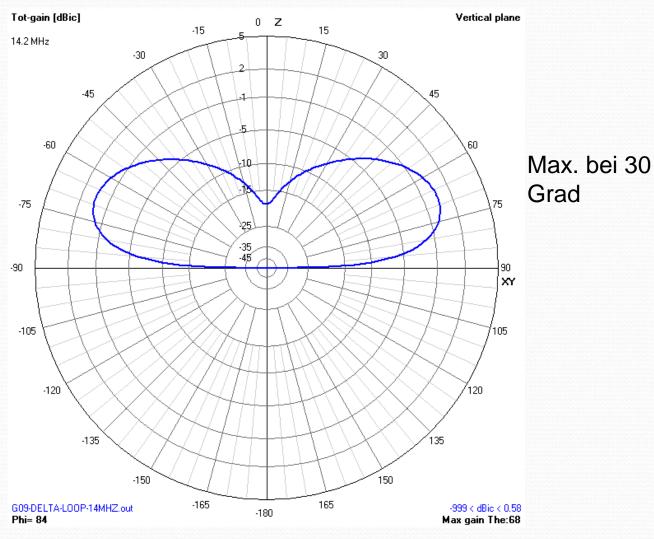
Delta Loop G09 - Lambd	schleife	schleife - Portabelversion			nach DJ8EI/PA8EI			
Polarisation: Vertikal								
Impedanz: 50 Ohm								
Resonanzfrequenz (Messwert)		7,1 MHz	10,12 MHz	14,2 MHz	18,1 MHz	21,2 MHz	24,9 MHz	28,4 MHz
L(m) = Co / f(MHz) Co = 300		42,25		21,13	16,58	14,15	12,05	10,56
Cx		306		309	3 10	312	313,00	314
Verlängerungsfaktor		1,02		1,03	1,03	1,04	1,04	1,05
L(m) = Cx / f (MHz)		43,10		21,76	17,12	14,72	12,57	11,05
A = 0,31 x L		13,37		6,75	5,33	4,56	3,90	3,43
B = 0,25 x L		10,79		5,44	4,28	3,68	3,41	2,76
C = 0,38 x L		16,39		8,27	6,54	5,60	4,78	4,20
X = 0,06 x L		2,60		1,30	1,03	0,88	0,75	0,66
Y = Transformator 75 Ohm RG 59U Lambda/4 x 0,66		6,97		3,56	3,49	2,38	1,99	1,78
Aufbauhöhe h1 = 0,25 x L		10,80		5,40	4,15	3,60	3,00	2,70
Empfohlene Min. Aufhängungshöhe der Delta Loop h2		12		8	7	6	5	5
SWR (Messwert)				1,11		1,05		1,06
rote Werte experimentell ermittelt								
Cx = 300 + A beinhaltet Verlängerung	sfaktor							


Delta Loop 10m - Drahtlängen

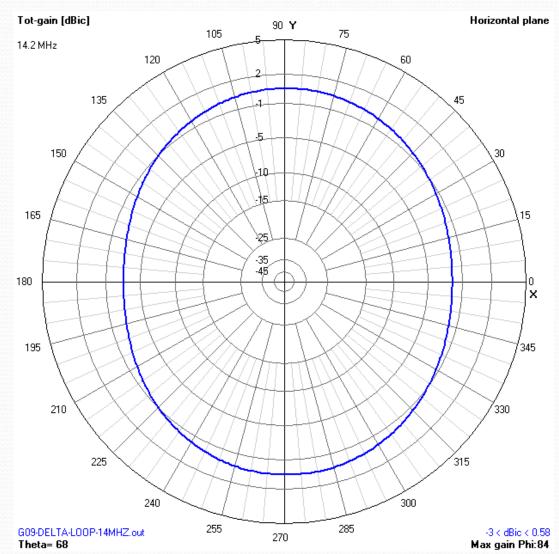

SWR 10-m Version


Delta Loop 15m - Drahtlängen

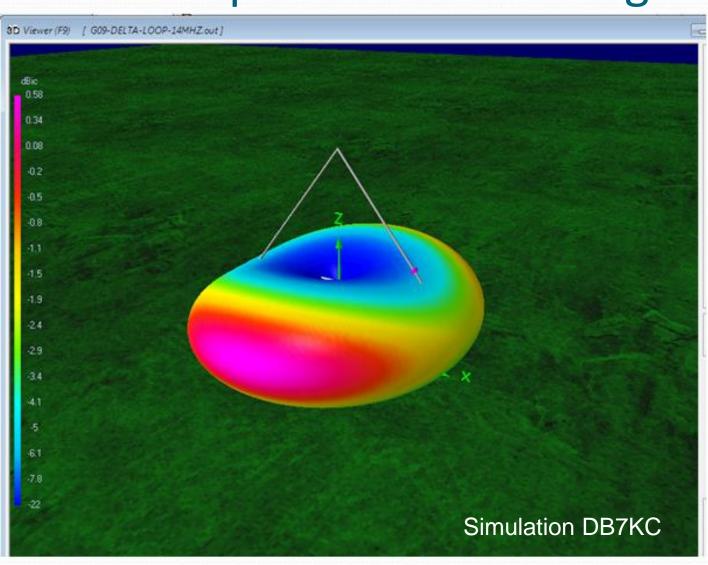

SWR 15 m - Version


Delta Loop 20m - Drahtlängen

SWR 20 m - Version

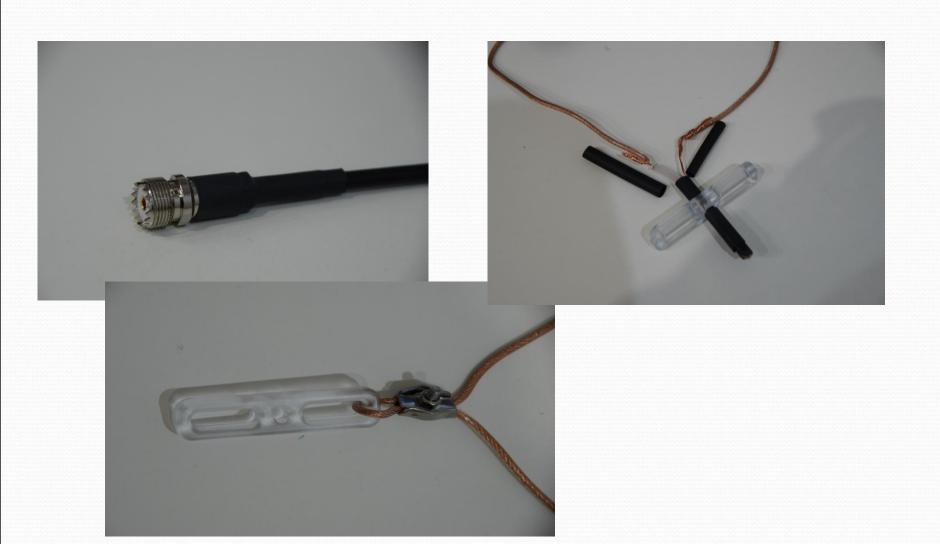


G09 Delta Loop Vertikaldiagramm


4NEC2 Rechnung DB7KC

G09 Delta Loop Horizontaldiagramm

4NEC2 Rechnung DB7KC


G09 Delta Loop – 3D Abstrahldiagramm

G09 Delta Loop - Aufbauhinweise

- Lambda viertel Transformationsleitung
 - Z0 = Zin x Zout Zin = 120 Ohm, Zout = 50 Ohm, Z0 ~ 75 Ohm
 - Verkürzungsfaktor 75 Ohm Koaxkabel RG59, V = 0.66
- Drahtlänge im Gegensatz zum Dipol nicht mit Verkürzungsfaktor sondern mit Verlängerungsfaktor
- Je nach Aufbauhöhe ist Feinabgleich der Länge L notwendig
- Anhaltswert (experimentell) für 20m ca. 7cm/100 kHz, für 15m ca. 5 cm/100 kHz, für 10m ca. 3 cm/100 kHz.
- Montagehinweis für PL22 TG siehe Kabel Kusch Anleitung!
 - Der Anschlussnippel der Kabelbuchse muss von 5,5 auf 6,5 mm aufgebohrt werden.
 - Der Koaxmantel unter der Gummitülle muss im Durchmesser reduziert werden
- Ein Mini Isolator muss auf 6,2 mm aufgebohrt werden zur Aufnahme des 6,2 mm starken 75 Ohm Kabels

Delta Loop - Montagedetails

G09 Delta Loop

Quellen

- Literatur:
 - CQ DL-Spezial Antennen, S. 62, Juni 2002
 - Rothammel 13.Auflage, S. 446 ff
 - Old Man 7/8 1998, Pierre Pasteur, HB9Q
 - Max Ruegger, HB9ACC, www.hb9bs.ch, know how Antennen
- Material:
 - Cu Antennendraht Nr.2, 2,7mm, www.kabel-kusch.de
 - RG 59 B/U, 75 Ohm, Kabel Kusch
 - PL Kabelbuchse PL22TG für 5,5 mm Koax, Kabel Kusch (Montageanleitung PL22TG)
 - Mini Isolator Makrolon, DX Wire, p.bogner@gmx.de
 - Simplexklemme Edelstahl, DX Wire

Tnx, 55 es best DX!

