Arduino für FunkAmateure

Arduino Einführung Teil 9

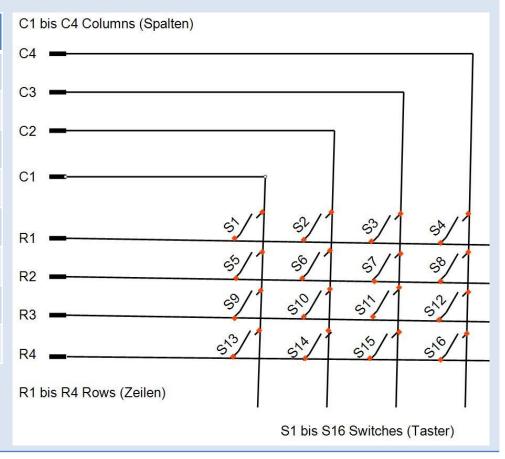
Taster-Platine 4x4

Wie gehe ich am besten vor?

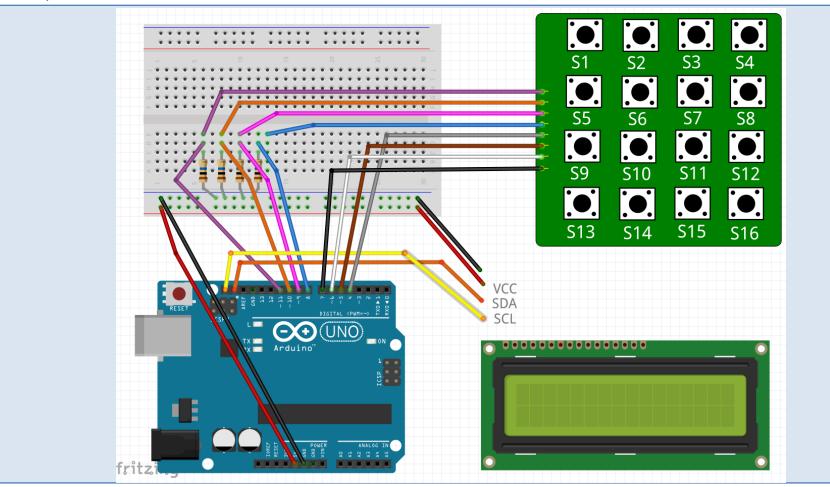
- 1. Was will ich machen?
- 2. Bauteile
- 3. Überlegungen zur Schaltung und Algorithmus
- 4. Zuordnung Arduino-Pins mit den Pins der Taster-Platine
- 5. Schaltplan Taster-Platine mit LCD
- 6. Zu Versuch 1 "ALL_TastPlatine_1.ino" und "functions.ino"
- 7. Zu Versuch 2 "ALL_TastPlatine_2.ino" und "functions.ino"
- 8. Sketch Versuch 1 Taster-Platine
- 9. Sketch Versuch 2 Taster-Platine
- 10. LCD-Funktionen

Vorversuch Taster-Platine	Die Matrix der Reihen und Spalten untersuchen.
LCD in Betrieb nehmen	 Ordner "LiquidCrystal_dfrobot" in "\arduino\libraries" anlegen Dateien kopieren (Anfrage an Enno)
Versuch 1 Taster-Platine	Taster-Platine betreiben Taste auf LCD anzeigen Konventionelle Programmierung
Versuch 2 Taster-Platine	Taster-Platine betreiben Taste auf LCD anzeigen Programmierung mit Ports und Bit-Operatoren

Was will ich machen?


Bauteile?			
Vorversuch Tast-Platine	Steckbrett ALLNET-Bausatz: Tast-Platine Multimeter		
LCD in Betrieb nehmen	ARDUINO ALLNET-Bausatz: LCD Anschlüsse:	LCD GND VCC SDA SCL	Arduino Steckbrett minus (-) Steckbrett plus (+) Arduino SDA Arduino SCL 28 PC5 ADC5 PCINT13 SCL AREF 21 AREF

Tast-Platine Versuch 2 Bauteile s.o.


Überlegungen zur Schaltung und Algorithmus				
Aufgabe	Ein Tastenduck (S1 bis S16) soll erkannt werde	n.		
Stromkreise?	Wird Taster S9 gedrückt, so ergibt sich beginnend bei Stift R3 über den Taster S9 zum Stift C1 ein Stromkreis. Wegen der 16 Taster ergeben sich 16 Stromkreise.			
Arduino OUTPUT-Pins	Wir verbinden die Pins R1 bis R4 der Taster-Pla	atine mit Arduino-Pins im OUTPUT-Modus (+ 5V).		
Arduino INPUT-Pins	Wir verbinden die Pins C1 bis C4 der Taster- Platine mit Arduino-Pins im INPUT-Modus.	C3 —		
Algorithmus	"S6" sei gedrückt. In einer äußeren Schleife setzen wir die OUTPUT-Pins (R1 bis R4) nacheinander auf HIGH. In einer inneren Schleife fragen wir die INPUT-Pins (C1 bis C4) auf HIGH ab. Hier wird jeweils im 2. Durchlauf der äußeren und der inneren Schleife "S6" gefunden.	C2 — C1 — S)		

Zuordnung Arduino-Pins mit den Pins der Taster-Platine

Port Pin	Arduino Pins	Platine
PB3	11	C4
PB2	10	C3
PB1	9	C2
PB0	8	C1
PD4	4	R1
PD5	5	R2
PD6	6	R3
PD7	7	R4

Schaltplan Taster-Platine mit LCD

ALL TastPlatine1.ino

In setup () Zuweisung der Modi OUTPUT und INPUT.

In loop() Aufruf der Funktion lookForKey(), die im Tab functions programiert ist.

Funktion mit Rückgabewert

Stelle zurück.: int lookForKey() { ... }. Mit dem Schlüsselwort return wird der Wert zurück gegeben: return keyFound.

Werden Funktionen die mit einem Datentyp deklariert, geben einen Wert an die aufrufende

In der äußeren while-Schleife werden die Reihen (row) R1 bis R4 durchlaufen. Am Anfang wird

Dieser Wert kann beim Funktionsaufruf einer Variablen zugewiesen werden. int key = lookForKey()

Beschreibung functions.ino

der zugehörige Pin auf HIGH, am Schleifenende auf LOW gesetzt. Am Schleifenende wird dann die Reihe um 1. erhöht (z.B. von pinc1 auf pinc2). In der inneren while-Schleife werden für die aktuelle Reihe, die Spalten (column) C1 bis C4

durchlaufen. Wird in einer Spalte ein HIGH gefunden (digitalRead (column) == HIGH), dann wird die

Tastennummer (keyCount) in keyFound gespeichert.

Danach werden in der inneren Schleife Spalte und Tastennummer um 1. erhöht.

Bitweise Operatoren	s. dazu: http://playground.arduino.cc/Code/BitMath Die Kommentare im Sketch erklären die Arbeitsweise.	
Port Register z.B. PORTD	s. dazu: https://www.arduino.cc/en/Reference/PortManipulation Die digitalen Pins 0 bis 7 machen 8 Bits in einem Byte aus.	
z. B. PIND	Das Register PIND ersetzt digitalRead(). Es enthält den Zustand im INPUT-Modus. Ergibt Serial.println(PIND) B01000000, so ist Bit 6 HIGH (Arduino Pin 6).	
z.B. PORTD	Das Register PORTD ersetzt digitalWrite(). PORTD = B00010000; // setzt Bit 4 (Arduino Pin 4) auf HIGH	
z.B. DDRD	Das Register DDRD ersetzt pinMode(). DDRD = B11110000; // setzt Arduino Pins 0 bis 3 als INPUT, Pin 4 bis 7 als OUTPUT DDRD = DDRD B11110000; // wie oben, aber Pin 0 bis 3 bleiben unverändert.	
	In der äußeren while-Schleife werden die Reihen (row) R1 bis R4 durchlaufen. Am Anfang wird der zugehörige Bit/Pin über das Port-Register PORTD auf "1", am Schleifenende auf "0" gesetzt. Am Schleifenende wird dann die Reihe um 1. erhöht.	
	Um einen gesetzten Taster in den Spalten (column) C1 bis C4 zu finden führe ich 4 Zuweisungen aus. Der Trick besteht darin, das die Zuweisung eine Bedingung enthält, die TRUE, d.h. "1" wird, wenn ein Bit/Pin (Reihe) auf HIGH steht. Ergibt PINB z.B. B0010, dann ist Bit 1/Pin 9 auf HIGH und die Bedingung (PINB==B0010) wird "1". Damit wird "column = (PINB== B0010) * 2" zu column = 2.	

Zu Versuch 2 "ALL_TastPlatine_2.ino" und "functions.ino"

Sketch Versuch 1 Taster-Platine

```
// ALL TastPlatine 1.ino
                                                                                           // functions.ino
// Library: LiquidCrystal dfrobot
                                                                                           int lookForKey(){
#include <Wire.h>
                                                                                            int keyCount = 1;
                                                                                            int keyFound = 0;
#include <LiquidCrystal 12C.h>
LiquidCrystal I2C lcd(0x27, 16, 2);
                                                                                            int row = pinR1;
int pinR1 = 4; //Arduino Pin 4
                                                                                            while (row <= pinR4){
int pinR2 = 5; //Arduino Pin 5
                                                                                             digitalWrite(row, HIGH);
int pinR3 = 6; //Arduino Pin 6
int pinR4 = 7: //Arduino Pin 7
                                               // digitale PIN 8 bis 11 auf INPUT
                                                                                             int column = pinC1;
                                                pinMode(pinC1, INPUT);
                                                                                             while (column <= pinC4 ){
int pinC1 = 8; //Arduino Pin 8
                                                pinMode(pinC2, INPUT);
                                                                                              if (digitalRead(column) == HIGH) keyFound = keyCount;
int pinC2 = 9; //Arduino Pin 8
                                                pinMode(pinC3, INPUT);
                                                                                              column = column + 1;
int pinC3 = 10; //Arduino Pin 10
                                                pinMode(pinC4, INPUT);
                                                                                              keyCount = keyCount + 1;
int pinC4 = 11; //Arduino Pin 11
                                                                                             digitalWrite(row, LOW);
void setup() {
                                               void loop() {
                                                                                             row = row + 1;
lcd.begin();
                                                int key = lookForKey();
 lcd.print("Taster druecken!");
                                                if (kev != 0) {
                                                                                            return keyFound;
                                                 lcd.clear();
                                                 lcd.setCursor(0,0);
// digitale PIN 4 bis 7 auf OUTPUT
 pinMode(pinR1, OUTPUT);
                                                 lcd.print("Taster = S");
 pinMode(pinR2, OUTPUT);
                                                 lcd.print(key);
 pinMode(pinR3, OUTPUT);
 pinMode(pinR4, OUTPUT);
                                                delay(300);
```

Sketch Versuch 2 Taster-Platine

```
// ALL TastPlatine 2.ino
                                          // functions.ino
// Library: LiquidCrystal dfrobot
                                          int lookForKey(){
#include <Wire.h>
                                           int portB = 0;
#include <LiquidCrystal 12C.h>
                                           int column = 0:
LiquidCrystal I2C lcd(0x27, 16, 2);
                                           int row = 0;
                                                                                     // die Reihen R1 (hier row = 0) bis
void setup() {
                                                                                                  R4 (hier row = 3) durchlaufen
 lcd.begin();
                                           while (row \le 3)
                                                                                     // anwenden des bitweise "Linksschieben": "<<"
 lcd.print("Taster druecken!");
                                            PORTD = B00010000 << row;
                                                                                                      Pin 4 => PD4 => B00010000 << 0 auf HIGH
DDRD = DDRD | B11110000;
                                                                                                  bis Pin 7 => PD7 => B00010000 << 3 auf HIGH
DDRB = DDRB | B11110000;
                                            delayMicroseconds(1);
                                                                                     // der Hardware Zeit geben
                                                                                     // den Port B auslesen, Ergebnis B0001 bis B0004 und B0000
                                            portB = PINB;
                                                                                     // die Spalte ermitteln, d.h.
void loop() {
                                            column =
                                                              (portB == B0001) * 1; // (portB == B0001) * 1 bedeuted aus B0001 wird 1
 int key = lookForKey();
                                            column = column + (portB == B0010) * 2; // (portB == B0010) * 2 bedeuted aus B0010 wird 2
                                            column = column + (portB == B0100) * 3; // (portB == B0100) * 3 bedeuted aus B0100 wird 3
 if (kev != 0) {
 lcd.clear();
                                            column = column + (portB == B1000) * 4; // (portB == B1000) * 4 bedeuted aus B1000 wird 4
 lcd.setCursor(0,0);
 lcd.print("Taster = S");
                                            if (column) break;
                                                                                      // war eine Spalte (column) HIGH, dann Taster gefunden
 lcd.print(key);
                                            row = row + 1;
 delay(300);
                                           return (column != 0) * ( row * 4 + column); // (column != 0) wenn TRUE, dann wird aus TRUE die "1"
                                                                                     // (column != 0) wenn FALSE, dann wird aus FALSE die "0"
                                                                                     // Beispiel: für die Reihe R3 (row = 2) und column = 3 wird
                                                                                             (3 != 0) * (2 * 4 + 3)
                                                                                                                      ) also Taste 11
                                                                                                              11
```

LCD-Funktionen

LiquidCrystal_I2C

lcd.backlight()

lcd.setCursor(0,0)

lcd.setCursor(0,1)

lcd.print("LED = ")

lcd.print(sensorValueMap)

lcd.clear()

lcd(0x27, 16, 2)

Hintergrundbeleuchtung an

LCD löschen, Cursor oben links

Vor void()-setup einfügen

Setzt die Anzahl Zeichen Setzt die Anzahl Zeilen

Setzt die Adress des LCD, meist 0x27

Setzt Cursor auf Zeichen 0 in Zeile 0 Setzt Cursor auf Zeichen 0 in Zeile 1

Erzeugt ein Objekt der Klasse "LiquidCrystal 12C" mit Namen "Icd"

Schreibt die Zeichen "LED=" ab der Cursorposition

Schreibt den Wert "sensorValueMap " ab der Cursorposition