Arduino für FunkAmateure

Arduino & graphische Programmiersprachen Workshop

- Sensoren aus ALLNET 4Arduino Set (ArdDevKIT1)
- Schaltung 1: Analoge Pins ...
- Schaltung 2: Digitale Pins ...
- Schaltung 3: Blinkende LED
- Schaltung 3: Blinkende LED, Mixly-Programm & Code
- Schaltung 3: Blinkende LED, Blöcke
- Schaltung 4: Taster & Serielle Schnittstelle (Monitor) ...
- Schaltung 5: Taster & LED ...
- Schaltung 6: LDR ...
- Schaltung 7: Temperatur LM35 ...
- Schaltung 8: DHT11 ...
- Schaltung 9: Audio-Sensor KY-038 ...
- Schaltung 10: Wasser-Sensor ...
- Schaltung 11: LCD ...

H39@email.de

Sensoren aus ALLNET 4Arduino Set (ArdDevKIT1)

LDR (Fotowiderstand)

Lageabhängiger Schalter mit Kugel

Wasser-Sensor (Platine mit Schalttransistor)

Temperatur & Luftfeuchtigkeits-Sensor Typ: DHT11

Schaltung 1: Analoge Pins

Aufgabe

Analoge Pins auf Eigenschaften untersuchen (Analogdigitalwandler)

Fritzing Schaltung

Potentiometer 10 k Ω

Es empfiehlt sich A1 bis A5 mit GND zu verbinden!

Schaltung 1: Analoge Pins

Vorhandenes Testprogramm Achtung: Das in der Mixly-IDE eingebaute Testprogramm lädt sich beim Klicken auf das öffnen:

Symbol auf den Arduino und überschreibt ein vorhandenes Programm.

Menüzeile

Analog-Wert A0 bei 0; ca. 1,5 mV

Analog-Wert A0 bei 512; ca. 2,4 V

Analog-Wert A0 bei 1024; ca. 4,6 V

Ergebnis: Die analogen Pins liefern Werte zwischen 0 und 1023.

Schaltung 2: Digitale Pins

Aufgabe Digitale Ports auf Eigenschaften untersuchen. Bei Welcher Spannung ist HIGH?

Fritzing Schaltung Potentiometer 10 $k\Omega$

Ergebnis: Ab ca. 2,3 V wird ein digitaler Pin "HIGH". Garantiert wird "HIGH" erst ab 3 V und "LOW" kleiner 2 V.

Versionen	
Empfehlung	Keyestudio-Version Mixly 0.998 mit Arduino-IDE 1.8.5
Link	https://drive.google.com/open?id=1CtP1bvZB-o4M5SfvIOOwFz-488gWsFTJ
Github-Version	Die Github-Version "Mixly 1.0.0" läuft mit der aktuellen "Arduino-IDE 1.8.10", ist aber nicht einfach einzurichten.
	Die folgenden Beispiele sind mit der "Keyestudio-Version" getestet.

Schaltung 3: Blinkende LED

Aufgabe Die LED soll im Sekundentakt blinken.

Fritzing Schaltung Widerstand 220 Ω ; LED

Schaltung 3: Blinkende LED, Mixly-Programm & Code

Vorhandenes Programm öffnen

- Menü "Open".
- Aufsuchen: "C:\Users\Public\Programme\Mixly0.998_WIN(7.9)\sample".
- Klicken auf "01闪烁LED.xml ".
- Code anzeigen durch Klicken auf

am linkem Rand.

```
Block-Programm
                                                   Code
                                                      1 void setup(){
 DigitalWrite PIN# 📜 13 🔻 Stat 🧲 HIGH 🔻
                                                           pinMode(13, OUTPUT);
                                                      3
 Delay ms 🔻 🛚
             1000
                                                      5 void loop(){
 DigitalWrite PIN# (13 v
                          Stat
                                LOW 🔻
                                                           digitalWrite(13,HIGH);
 Delay ms 🕶 📜 1000
                                                           delay(1000);
                            Ab Mixly 1.0.0
                                                           digitalWrite(13,LOW);
                           steht hier "millis"
                                                           delay(1000);
                              statt "ms"
                                                     10
                                                     11
```

Arbeitsschritte: "Open 01Blink.xml" > "Compile " > "Upload"

Was soll passieren: Die LED blinkt.

Schaltung 3: Blinkende LED, Blöcke

Block-Programm Code 1 void setup(){ DigitalWrite PIN# (13 v Stat (HIGH v pinMode(13, OUTPUT); 3 Delay ms 🔻 1000 5 void loop(){ DigitalWrite PIN# Stat LOW * 13 🔻 digitalWrite(13,HIGH); delay(1000); Delay msov 1000 digitalWrite(13,LOW); Ab Mixly 1.0.0 delay(1000); steht hier "millis" statt "ms" 11

Mixly-Block Bezeichnungen

Arduino-IDE Schlüsselwörter

Digitalen PIN auf HIGH/LOW mit Mixly-Block:

DigitalWrite PIN# Stat HIGH/LOW

Digitalen PIN auf HIGH/LOW Arduino-Sketch: digitalWrite(PIN#, HIGH oder LOW)

```
DigitalWrite PIN# 13 V Stat HIGH V
```

Mit Hilfe der Arduino-Referenz https://www.arduinoforum.de/arduino referenz down.php kann man die Arduino-Sprache nachschlagen und lernen.

Schaltung 4: Taster & Serielle Schnittstelle (Monitor)

Aufgabe

Taster gedrückt, dann Nachricht ausgeben.

Fritzing Schaltung

Taster Widerstand 10 $k\Omega$

Schaltung 4: Taster & Serielle Schnittstelle (Monitor), Mixly-Programm & Code

Block-Programm Code

```
setup
 Serial v println ( " Taster wurde gedrückt. "
        DigitalRead PIN#
   Serial v println
                      " Nachricht senden "
    Delay msov 1000
                          Ab Mixly 1.0.0
                         steht hier "millis"
                             statt "ms"
```

```
1 void setup(){
     Serial.begin(9600);
     Serial.println("Taster wurde gedrückt.");
     pinMode(2, INPUT);
7 * void loop(){
     if (digitalRead(2)) {
       Serial.println("Nachricht senden");
       delay(1000);
10
11
12
13
14
```

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload"

Was soll passieren? Nach dem Programmstart soll bei Tastendruck eine Nachricht an den "Monitor" geschickt werden.

Monitor | ----

Fenster Monitor öffnen durch Klicken auf "Monitor":

Schaltung 4: Taster & Serielle Schnittstelle (Monitor), Blöcke

Mixly-Programm

Blöcke

Bildet den Programmblock, der nur 1-mal ausgeführt wird.

Spricht den seriellen Ausgang an.

_Enthält den Text/Nachricht.

if

Bildet einen Auswahl-Block, bestehend aus Bedingung und Anweisungsteil wenn Bedingung "true" ist

Digitalread PIN#

Gibt von einem digtalem PIN den Zustand HIGH / LOW zurück.

Delay

Programm für 1 Sekunde anhalten.

13

Schaltung 5: Taster & LED

Aufgabe

Taster drücken, dann LED an.

Taster drücken, dann LED aus.

Fritzing Schaltung

Taster Widerstand 10 $k\Omega$

LED Widerstand 220 Ω

Schaltung 5: Taster & LED, Mixly-Programm & Code

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload" Was soll passieren? Bei Tastendruck geht die LED an bzw. aus.

Schaltung 5: Taster & LED, Blöcke

Mixly-Programm

Blöcke (nur hinzugekommene)

Schaltung 6: LDR

Aufgabe Analoge Messwerte des LDR auf dem Monitor ausgeben.

Fritzing Schaltung LDR; Widerstand 10 $k\Omega$

Schaltung 6: LDR, Mixly-Programm & Code

```
long ldr Wert;
setup
                                            void setup()
   Serial println
                   LDR
                                               Serial.begin(9600);
   Declare Idr Wert as long ▼ value ( 0
                                               ldr Wert = 0;
                                               Serial.println("LDR");
Idr_Wert ( AnalogRead PIN# A0 ▼
                                            void loop()
Serial print
               LDR-Wert:
Serial println
              Idr Wert
                                               ldr Wert = analogRead(A0);
                                               Serial.print("LDR-Wert: ");
Delay ms 1020
                        Ab Mixly 1.0.0
                                               Serial.println(ldr Wert);
                       steht hier "millis"
                                               delay(1000);
                          statt "ms"
```

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload"
Was soll passieren? Nach dem Programmstart werden LDR-Werte an den "Monitor" geschickt.
Fenster Monitor öffnen durch Klicken auf "Monitor":

Schaltung 6: LDR, Blöcke

Mixly-Programm

Blöcke (nur hinzugekommene)

Pins.

Schaltung 7: Temperatur LM35

Aufgabe

Analoge Messwerte des LM35 auf dem Monitor ausgeben.

Fritzing Schaltung

LM35; -55 °C bis +150 °C; 5000 mV entsprechen 1024 Schritten (Analogdigitalwandler)

milliVolt = analogRead(A1) / 1024 * 5000

Umrechnung mV in °C:

tempWert = milliVolt/10

Oder:

tempWert = analogRead(A1) * 0,4883

Schaltung 7: Temperatur LM35, Mixly-Programm & Code

```
setup
  Serial v println # 4 Temperatur 22
  Declare tempWert as float value
Delay mso v
            1000
tempWert]
           LNO5 Temperature Pin A1 ▼
Serial print memperatur:
Serial v println
                  tempWert
                       Ab Mixly 1.0.0
                      steht hier "millis"
                         statt "ms"
```

```
volatile float tempWert;
 3 void setup(){
     Serial.begin(9600);
     tempWert = 0;
 6
     Serial.println("Temperatur");
8
9 void loop(){
     delay(1000);
10
11
     tempWert = analogRead(A1)*0.488;
12
     Serial.print("Temperatur: ");
13
     Serial.println(tempWert);
14
15 }
```

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload"

Was soll passieren? Nach dem Programmstart werden <u>Temperatur-Werte a</u>n den "Monitor" geschickt.

Fenster Monitor öffnen durch Klicken auf "Monitor":

Schaltung 7: Temperatur LM35, Blöcke

Mixly-Programm

Blöcke (nur hinzugekommene)

Deklariert eine Variable mit dem Bezeichner "tempWert " vom Typ "float" und initialisiert diese mit "0".

tempWert

Zuweisungs-Block, dient der Zuweisung eines Wertes.

LM35 Temperature Pin

LM35-Block: Gibt von einem analogem Pin den Zustand im Wertebereich 0 bis 1023 zurück. Fügt den Code zur Umrechnung in °C automatisch ein:

",tempWert= analogRead(A1)*0.488"

Schaltung 8: DHT11

Aufgabe

Analoge Messwerte des DHT11 auf dem Monitor ausgeben.

Fritzing Schaltung Temperatur/Luftfeuchtigkeits-Sensor Typ: DHT11

Schaltung 8: DHT11, Mixly-Programm & Code

Library "DHTlib" ist in der "Keyestudio-Version" enthalten.

```
Serial v println
                   " DHT11 "
  Declare t as float v value
  Declare h as float value
Delay ms v
            2000
h
    DHT11 Pin 3 7
                      getHumidity *
t
    DHT11 Pin 3 V
                      getTemperature
Serial * print
                "Feuchtigkeit: "
Serial v print
                "\tTemperatur: "
Serial v print
Serial v println | t
```

```
#include <dht.h>
  volatile float t:
   volatile float h;
   dht myDHT 3;
 7 int dht 3 gethumidity() {
     int chk = myDHT 3.read11(3);
     int value = myDHT 3.humidity;
10
     return value;
11 }
12
13 int dht 3 gettemperature() {
14
     int chk = myDHT 3.read11(3);
15
     int value = myDHT 3.temperature;
16
     return value;
17 }
```

```
19 void setup(){
     Serial.begin(9600);
21
     t = 0;
     h = 0;
22
23
     Serial.println("DHT11");
24
25
26 void loop(){
27
     delay(2000);
28
     h = dht 3 gethumidity();
     t = dht 3 gettemperature();
29
30
     Serial.print("Feuchtigkeit: ");
     Serial.print(h);
31
32
     Serial.print("\tTemperatur: ");
33
     Serial.println(t);
34
35 }
```

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload"

Was soll passieren? Nach dem Programmstart werden Werte an den "Monitor" geschickt.

Fenster Monitor öffnen durch Klicken auf "Monitor":

Schaltung 8: DHT11, Blöcke

Mixly-Programm

setup Serial v println / " DHT11 " Declare t as float ▼ value Declare h as float value Delay ms * 2000 DHT11 Pin 3 V getHumidity ▼ Œ getTemperature ' DHT11 Pin 3 V Serial ▼ print "Feuchtigkeit: "" Serial ▼ print " \tTemperatur: " Serial 🔻 print 🌘 Serial v println (t

Blöcke (nur hinzugekommene)

Declare

Deklariert eine Variable mit dem Bezeichner "t" vom Typ "float" und initialisiert diese mit "0".

DHT11 Sensor

Gibt von einem digitalem Pin die Feuchtigkeit zurück. Berechnung in Library "dht.h".

DHT11 Sensor

```
DHT11 Pin getTemperature V
```

Gibt von einem digitalem Pin die Temperatur in °C zurück. Berechnung in Library "dht.h".

Schaltung 9: Audio-Sensor KY-038

Aufgabe Analoge Messwerte des KY-038 auf dem Monitor ausgeben.

http://sensorkit.joy-it.net/index.php?title=KY-038 Mikrofon Sound Sensor Modul

Fritzing Schaltung Audio Sensor: KY-038 AO, Analoger Output, Spannungssignal vom Sensormodul DO, Digitaler Output

Pin + an Arduino 5+ Pin - an Arduino GND Pin A0 an Arduino A2

> Linke LED an die Schwelle aus-an justieren

Schaltung 9: Audio-Sensor KY-038, Mixly-Programm & Code

Die Empfindlichkeit am Sensor so einstellen, dass die linke LED an der Schwelle zu an ist!

```
setup
  Declare sound as float value
  Serial v println 444 Audio-Sensor 22
sound
        AnalogRead PIN#
                       [ A2 ▼
if
          sound ≤ ▼
                       515
    Serial v println
                       " Hallo "
do
    Serial ▼ flush
```

```
volatile float sound;
 3 void setup(){
     sound = 0.0;
     Serial.begin(9600);
     Serial.println("Audio-Sensor");
 7
9 void loop(){
      sound = analogRead(A2);
10
     if (sound <= 515) {
11 -
        Serial.println("Hallo");
12
       Serial.flush();
13
14
15
16
17 }
```

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload"

Was soll passieren? Nach dem Programmstart wird bei einer bestimmten Lautstärke "Hallo" ausgegeben.

Fenster Monitor öffnen durch Klicken auf "Monitor":

Schaltung 10: Wasser-Sensor

Aufgabe

Analoge Messwerte des Wasser-Sensors auswerten. Bei zu hohem oder zu niedrigem Wasserstand Warnmeldung auf Monitor ausgeben.

Fritzing Schaltung Wasser-Sensor

Pin + an Arduino 5+ Pin - an Arduino GND Pin S an Arduino A3

Schaltung 10: Wasser-Sensor, Mixly-Programm & Code

Den Bereich des erlaubten Wasserstandes durch Probieren herausfinden.

```
Declare level as int v value 0
  level
      AnalogRead PIN#
                   1 A3 ▼
if
                          and 🔻
          level > *
                                  level < 1 515
                    450
                   "Füllstand okay "
     Serial v println
do
    Serial v println
                   "Füllstand?"
else
Delay ms 🔻
         1000
```

```
1 volatile int level;
 3 void setup(){
     level = 0;
     Serial.begin(9600);
     Serial.println("Wasser-Sensor");
 9 void loop(){
      level = analogRead(A3);
     if (level > 450 && level < 515) {
        Serial.println("Füllstand okay");
12
13
14 -
     } else {
        Serial.println("Füllstand?");
15
16
17
18
     delay(1000);
19
20
```

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload"

Was soll passieren? Nach dem Programmstart wird bei einem bestimmten Wasserstand "Füllstand okay" ausgegeben.

Monitor E

Fenster Monitor öffnen durch Klicken auf "Monitor":

Schaltung 10: Wasser-Sensor, Blöcke

Mixly-Programm

Blöcke (nur hinzugekommene)

if-else bauen

if-else

Bildet einen Auswahl-Block, bestehend aus Bedingung und Anweisungsteilen für die Bedingung "true" (do) und für die Bedingung "false" (else).

Schaltung 11: LCD

Aufgabe Nachrichten auf einem 2-zeiligem LCD ausgeben.

Fritzing YwRobot LCD1602 iIC V1 Schaltung

I2C LCD1602	Arduino Uno
GND	GND
VCC	5V
SDA	A4
SCL	A5

Schaltung 11: LCD, Mixly-Programm & Code

Library "LiquidCrystal_I2C" einbinden: Kopiere "...\Mixly_Arduino-master\mixly_arduino\arduino-1.x.x\libraries\LiquidCrystal_I2C" nach: "...\Mixly_Arduino-master\mixly_arduino\arduino-1.8.5\libraries"

```
setup

setup LCD 1602 v mylcd address 0x27

LCD mylcd print line1 ("EBW")

print line2 ("Pattensen")
```

```
#include <Wire.h>
   #include <LiquidCrystal I2C.h>
   LiquidCrystal I2C mylcd(0x27,16,2);
 5
 6 void setup(){
     mylcd.init();
     mylcd.backlight();
 9
10
11 void loop(){
     mylcd.setCursor(0, 0);
     mylcd.print("EBW");
     mylcd.setCursor(0, 1);
     mylcd.print("Pattensen");
15
16
17 }
```

Arbeitsschritte: "Programmieren" > "Save as" > "Compile " > "Upload" Was soll passieren? Nach dem Programmstart werden Nachrichten auf dem LCD angezeigt.

Schaltung 11: LCD, Blöcke

Mixly-Programm

Blöcke (nur hinzugekommene)

Kategorie Monitor: setup LCD-Block

```
setup LCD 1602 v mylcd address 0x27
```

Fügt die Library ein. Deklariert und initialisiert das Objekt "mylcd".

Kategorie Monitor: LCD-print line Block

```
LCD mylcd print line1 "EBW"

print line2 "Pattensen"
```

Ermöglicht die Ausgabe von Text oder Werten in Zeile 1 bzw. Zeile 2.