Arduino DDS 9851

- Inhalt
- Schaltplan von DK1BS / DK2JK
- Arduino Nano
- Schaltplan NanoESP (Pretzel Board)
- Sketch
- <frequency tuning word>
- 40-bit Steuerwort
- AD9851 Programmschritte
- W1 bis W4 finden
- Bits übertragen
- Informationen

Schaltplan von DK1BS / DK2JK

Quelle: http://www.kh-gps.de/ant_analyzer.htm

Arduino Nano

Die Belegung der digitalen PIN ist frei wählbar!

Schaltplan NanoESP (Pretzel Board)

Sketch

Pin-Zuordnung im Code	<pre>8 // Adduino UNO & Nano 9 const int RESET=6; 10 const int DATA=7; 11 const int FQ_UD=8; 12 const int W_CLK=9;</pre>		
<pre>"frequency tuning word" Anpassung an AD9851 mit 180 MHz: 182 // Calculate the DDS word - from AD9850 Datasheet 183 // int32_t f = Freq_Hz * 4294967296.0/125000000; // 125 MHz 184 // Calculate the DDS word - from AD9851 Datasheet 185 int32_t f = Freq_Hz * 4294967296 / 180e6; // 180 MHz inserted by EBW Enno</pre>			
"REFCLK" setzen	Anpassung an AD9851:		
<pre>191 // 5th byte needs to be zeros, REFCLK not set 192 // send byte(0):</pre>			

193 // 5th byte with REFCLK set

194 send_byte(0x01);

// send control byte with setting REFCLK

<frequency tuning word>

Quelle	AD9851.pdf
	Im "parallel mode" kann das 40-bit Steuerwort, aufgeteilt in 5 Bytes mit je 8 Bit, Byte für Byte, d.h. in 5 Schritten übertragen werden.
	Die ersten 4 Bytes enthalten das <frequency tuning="" word="">, also die gegebene Frequenz:</frequency>
Frequenz	fout = <system clock=""> * <frequency tuning="" word=""> / 2^32 in Hz</frequency></system>
fout	Geforderte Frequenz in Hz
<system clock=""></system>	<i>"180e6 MHz"</i> Referenzschwingung, hier 30 MHz Quarz multipliziert mit 6. Dann REFCLK setzen.
2^32=	4294967296
<frequency tuning="" word=""></frequency>	= t_freq
	Das <frequency tuning="" word=""> "t_freq" kann berechnet werden mit:</frequency>
t_freq=	fout * 4294967296 / 180e6 in Hz

40-bit Steuerwort

Beisniel	fout = $10e6$ Hz				
Dezimal	t freq = 238609296				
Binär	t_freq = B 00001110 00111000 11100011 10010000 (Leerzeichen wegdenken)				
40-bit Steuerwort bestehend aus: 8 bit Steuerbyte und 32 bit Frequenz	W0	W1	W2	W3	W4
	s. unten	00001110	00111000	11100011	10010000
Steuerbyte	W0				
REFCLK setzen	0x01 oder B00000001				
	Beginnend mit W4 bis W0, muss das <frequency tuning="" word=""> Byte für Byte übertragen werden.</frequency>				
W_CLK	Das HIGH/LOW-schreiben des W_CLK-PINs trennt die Bytes voneinander.				
FQ_UD	Das HIGH/LOW-schreiben des FQ_UD-PINs sendet das 40-bit-Register				

AD9851 Programmschritte

Quelle AD9851.pdf

- 1. RESET
- 2. Byte W4 übertragen
- 3. W_CLK HIGH/LOW
- 4. Byte W3 übertagen
- 5. W_CLK HIGH/LOW
- 6. Byte W2 übertagen
- 7. W_CLK HIGH/LOW
- 8. Byte W1 übertagen
- 9. W_CLK HIGH/LOW
- 10. Byte WO übertragen
- 11. W_CLK HIGH/LOW
- 12. FQ_UD HIGH/LOW

Sketch: W1 bis W4 finden

t_freq=238609296	
00001110001110001110010000)
for (int b=0; b<4; b++, t_freq>>=8) { }	mit ">>"-Operator
0000111000111000111 0010000	
000011100011100011100011	
0000111000111000	
00001110	
(t_freq & 0xFF) mit binärem "&-Operate	or" maskieren
00001110001110001110010000	
000000000000000000000000000000000000000	Hex "0xFF" mit "&"
00000000000000000000000000000000000000	Ergibt erstes zu übertragenes Byte
	<pre>t_freq=238609296 00001110001110001110010000 for (int b=0; b<4; b++, t_freq>>=8) { } 00001110001110001110010000 000011100011100011100011 0000111000111000111000110000 (t_freq & 0xFF) mit binärem ,&-Operato 00001110001110001110010000 0000000000</pre>

Sketch: Bits übertragen

für b=0:	00000000000000000000000000000000000000
Aufteilen in Bits	for (int i=0; i<8; i++, data_to_send>>=1) {} mit ">>"-Operator
i=0	10010000
i=4	00001001 (4 * >>)
i=7	1 (7 * >>)
Das erste Bit selektieren:	(data_to_send & 0x01) mit binärem "&-Operator maskieren
für i=4	00001001
	00000001 Hex "0x01" mit "&"
	0000001 Zu übertragenes Bit rechts

Informationen

http://www.dk2jk.darc.de/vna_dk2jk/ http://www.dk2jk.darc.de/vna_dk2jk/dokumentation/13dez2014/antennen_analyser_Baumappe%20v2.pdf

http://www.kh-gps.de/ant_analyzer.htm

https://www.electrodragon.com/w/AD9850 Module DDS Signal Generator V2

http://elektronikbasteln.pl7.de/ad9851.html