Mikroprozessor ATmega328

- Arduino Standalone
- Arduino IDE Erfahrungen
- Rechteckschwingung Arduino (*.ino *.cpp)
- ATmega328P Daten, Externe Anschlüsse
- AVR Architektur
- Memory, SRAM Data Memory
- Arithmetic logic unit, Signalprocessing
- Register PORTB
- I/O-Port programmieren
- Mnemonic SBI, OUT
- GNU AVR-GCC
- Assembler: Quelle zum Opcode
- Gerd's AVR Simulator
- Programm schreiben, Assembler-Code
- Assembler-Code-Listing
- Simulation SIM_02
- Scope SIM_02, SIM_05
- Cycles
- Informationen

Thema

ATmega328p	Den ATmega328p Microcontroller (µC) in seinen Funktionen kennen lernen.
Idee	AVR-Simulation
Aufgabe	Maximale Frequenz einer Rechteckschwingung?
	Experimentierbord mit ATmega328p Standalone.
	Erfahrungen mit Arduino.
	Physikalische Pins des ATmega328p.
	Interner Aufbau des ATmega328.
	Organisation der Speicher.
	CPU und Register
	Sprache Assembler
	Gerd's AVR Simulator
	Rechteckschwingung, Takte
Danksagung	Das Material von Gerhard Schmidt, DG4FAC, war sehr hilfreich bei der Erarbeitung des Themas. <u>http://www.dg4fac.de/</u> <u>http://www.avr-asm-tutorial.net/</u>

Arduino Standalone

FTDI Tx an IC Pin #2 (Tx an Rx) FTDI Rx an IC Pin #3 (Rx an Tx) FTDI DTR an Kondensator 0 ,1 μ F und weiter an IC Pin 1 FTDI Gnd an Steckbrett FTDI 5V an Steckbrett

Quelle:

https://www.yuriystoys.com/2012/02/arduino-on-beadboard-uploading-your.html

Arduino IDE Erfahrungen

Rechteckschwingung Arduino (*.ino)

Aufgabe: Port und Pins: Mikrokontroller:	Rechteckschwingung Arduino Pin: (physical pin) Port Port Pin: Port Direction Pin Clock frequency	Ziel maximale Frequenz? Pin 13 Pin 19 B PORTB5 (PB5) DDB5 16 MHz		Rechteck
Arduino IDE Sketch	<pre>boolean status = 0; void setup() { pinMode(13, OUTPUT); } void loop() { status = status ^ 1; digitalWrite(13, statu }</pre>	15);	f ≈ 158 kHz T ≈ 6,32 μs ≈ 1/100 vom Quarz	

750 Bytes

Flash

Rechteckschwingung Arduino (*.cpp)

Aufgabe: Port und Pins: Mikrokontroller:	Rechteckschwingung Arduino Pin: (physical pin) Port Port Pin: Port Direction Pin Clock frequency	Ziel maximale Frequenz? Pin 13 Pin 19 B PORTB5 (PB5) DDB5 16 MHz		Rechteck
Arduino IDE Sketch	<pre>// Die *.ino-Datei bleib // Zweiter Tab mit main. #include <avr io.h=""> // int main(void) { DDRB = (1 << DDB5); for(;;) { PORTB ^= (1 << P0 } return 0; // the p. }</avr></pre>	t bestehen, nur Inhalte lös cpp / Defines names for AVR reg // make PORTB5 as ORTB5); // toggle Pin PORT rogram executed successfull	schen sisters: SF output 2B5 -Y	f \approx 1,6 MHz T \approx 624 ns \approx 1/10 vom Quarz

Flash

ATmega328P Daten

Hersteller	Microchip (vormals Atmel)			
Familie	8-Bit-Mikrocontroller			
Architektur	RISC			
Anzahl Instruktionen	131			
Register	32 x 8			
Quarz	16 MHz			
	16 MIPS at 16 MHz			
Flash Programm Speicher	32 KiB kibibyte			
EEPROM	1 KiB kibibyte			
SRAM	2 KiB kibibyte			
Peripherie	Timer/Counter; PWM; ADC; USART; SPI; I ² C			
Betriebsspannung	2,7 V bis 5,5 V			
Quelle: © 2018 Microchip	Technology Inc. Data Sheet Complete DS40002061A-page 1			

Externe Anschlüsse

Quelle: Atmel-42735A-ATmega328/P_Datasheet_Complete-06/2016

AVR Architektur

Harvard-Architektur RISC

Program Flash Memory for Application ...

Data Memory

- 32 x 8 General Purpose Working Registers
- I/O memory space wit 64 addresses, Ports
- Internal SRAM

ALU supports arithmetic and logic operations between registers or between a constant and a register

Digital Signalprocessing

Quelle: https://microchipdeveloper.com/8avr:avrcore

Memory

SRAM Data Memory

Arithmetic logic unit

Innerhalb eines Taktes werden arithmetische Operationen zwischen General Purpose Registern (oder einem Register und einer Konstanten) ausgeführt.

Die Operationen haben die Kategorien: Arithmetisch, logisch, bit-Operationen

Beispiel: add r1,r2 ; Add r2 to r1 (r1=r1+r2)

ADD Rd,Rr Rd \leftarrow Rd + Rr $0 \le d \le 31, 0 \le r \le 31$

Signalprocessing

Register PORTB

Quelle: © 2018 Microchip Technology Inc. Data Sheet Complete DS40002061A-page 100

I/O-Port programmieren

Mnemonic SBI

wineme		וסכ			1		
	Descr Sets a	r iption specified bit in an I/O I Operation:	Register. This instruction ope	rates on the lower 32 I	/O Regist	ters – addresses 0-31.	
	(i)	I/O(A,b) ← 1		v			
	(i)	Syntax: SBI A,b	Operands: $0 \le A \le 31, 0$	≤ b ≤ 7	Progran PC ← P	n Counter: PC + 1	
	16-bit	Opcode:					
	1001		1010	AAAA	/	Abbb	
	Exa	mple:					
	sł	oi 0x1C,0 ; Set	read bit in EECR				
	Words Cycle	s: s:	1 (2 bytes) 2				

Quelle: © 2020 Microchip Technology Inc. Manual DS40002198A-page 116

Mnemonic OUT

Quelle: © 2020 Microchip Technology Inc. Manual DS40002198A-page 105

GNU AVR-GCC

Assembler: Quelle zum Opcode

Gerd's AVR Simulator

Programm	Programm schreiben				
Gerd's AVR Simulator	Starten (Zur detaillierte Anwendung siehe u.g. Handbuch.)				
	Projekt anlegen				
	Assembler-Programm in Editor eingeben				
	Quellcode assemblieren				
	Simulation				
Quelle:	http://www.avr-asm-tutorial.net/avr_sim/index_en.html http://www.avr-asm-tutorial.net/avr_sim/23/avr_sim_Handbuch_v23.pdf				

Assembler-Code

SIM 02.asm 1 ; Blink LED 2 MHz 2 3 .nolist 4 .include "m328pdef.inc" ; get definitions of ATmega328P 5 .list 6 7 in DDRB, PB5 ; set bit PB5 in Direction-Port B ; 8 9 loop: ; jump target label "loop" sbi PORTB, PB5 ; set bit PB5 in Output-Port B 10 11 ; do nothing nop 12 ; do nothing nop 13 cbi PORTB, PB5 ; clear bit PB5 in Output-Port B 14 rjmp loop ; relative jump to label "loop" 15 16; End of source code

Assembler-Code-Listing

```
SIM 02.lst
 1 gavrasm Gerd's AVR assembler version 4.8 (C)2020 by DG4FAC
 3
 4 Path: C:\Users\enno \Desktop\Assembler-EBW\GerdsSimulator\SIM 02\
 5 Source file: SIM 02.asm
 6 Hex file: SIM 02.hex
 7 Eeprom file: SIM 02.eep
 8 Compiled: 09.05.2021, 12:38:34
 9 Pass:
10
       1: ; Blick LED 2 MHz
11
12
       2:
13
       3: .nolist
14
       6:
15
       7:000000 9A25
                        sbi DDRB, PB5 ; set bit PB5 in Direction-Port B
16
       8:
17
      9: loop:
                               ; jump target label "loop"
     10: 000001 9A2D sbi PORTB, PB5 ; set bit PB5 in Output-Port B
18
19
      11: 000002
                0000
                            ; do nothing
                       nop
                                     ; do nothing
20
     12: 000003 0000 nop
21
     13: 000004 982D cbi PORTB, PB5 ; clear bit PB5 in Output-Port B
22
     14: 000005 CFFB rjmp loop ; relative jump to label "loop"
23
     15:
      16: ; End of source code
24
```

Simulation SIM 02 sbi DDRB, PB5 ; set bit PB5 in Direction-Port B 15 9A25 7: 000000 16 0 17 9: loop: ; jump target label "loop" 10: 000001 9A2D sbi PORTB, PB5 ; set bit PB5 in Output-Port B - 0 avr sim SIM 02 \times AVR Port \times 🚯 Restart 🚺 Step 📔 Skip 🚺 Run/Go 🐰 Stop Simulation status SREG Step Update (Help) 7 6 5 4 3 2 0 Prog counter = \$000001 Delay ITHSVNZC status PORTB 0 0 0 0 Instructions ms 0 0 0 0 Instructions = 1 Stackpointer = \$0000 1000 10 DDRB 0 0 0 0 0 0 0 Watchdog = 0.00000% Clock frequ. = 16,000,000 Register PINB 0 0 Lo 0 0 0 0 0 Time elapsed = 125.0 ns Stop watch = 125.0 ns Reg +0 +1 +2 +3 +4 +5 +6 +7 TINnB Sleep share = 0.00000% 00 00 00 00 00 00 00 RO 00 **INTnB R**8 00 00 00 00 00 00 00 00 6 PCINT0 5 4 3 R16 00 00 00 00 00 00 00 00 R24 00 00 00 00 00 00 00 00 в Previous Next Messages \$0000: Starting Show internal hardware Tools Ports Timers WDT ADC EEPROM SRAM Scope Alert

Scope SIM_02

Scope SIM_05

Cycles

	Α	В	С	D	E	F	G	Н	I.	J	Κ	L	М	Ν	0	Р
1																
2					f	16.000.000	1/s									
3					T=1/f	0,000000625	S									
4						0,0000625000	ms		0,0625	us		62,5	ns			
5	tim	e at start of loop				0,0001250000	ms		0,125	us		125	ns			
6																
7															0	ns
8		SBI DDRB	2		cycle	0,0001250000	ms		0,125	us		125	ns		125	ns
9																
10	•	SBI PORTB	2		cycle	0,0001250000	ms		0,125	us		125	ns		250	ns
11		NOP	1		cyle	0,0000625000	ms		0,0625	us		62 <mark>,</mark> 5	ns		312,5	ns
12		NOP	1	4	cyle	0,0000625000	ms		0,0625	us		62,5	ns		375	ns
13		CBI PORTB	2		cyle	0,0001250000	ms		0,125	us		125	ns		500	ns
14	1	RJMP	2	4	cyle	0,0001250000	ms		0,125	us		125	ns		625	ns
15																
16		Іоор										500	ns			
17					f=1/T							2.000.000,00	Hz			
18												2.000,00	kHz			
19												2,00	MHz			
20																

Hardware	
Arduino UNO	Arduino UNO Board mit ATmega328p.
Standalone	ATmega328p auf Steckbrett
USB zu TTL Adapter	"FTDI232 USB to TTL Serial Adapter Module" zur Programmierung über die serielle Schnittstelle
ISP	ISP (In-System-Programmer)

Arduino auf Breadboard

Idee	Standalone ATmega328p
Arduino Standalone	https://www.arduino.cc/en/Main/Standalone https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard https://www.mikrocontroller.net/articles/AVR-Tutorial: Equipment
FTDI Adapter	https://www.yuriystoys.com/2012/02/arduino-on-beadboard-uploading-your.html
Arduino ISP	https://www.arduino.cc/en/Main.ArduinoISP https://www.arduino.cc/en/uploads/Main/ArduinoISP_WindowsDrivers.zip

Assembler Compiler

Simulator	Gerd's AVR assembler <u>http://www.avr-asm-tutorial.net/avr_sim/index_en.html</u> <u>http://www.avr-asm-tutorial.net/avr_sim/23/avr_sim_23_win64_debug.zip</u>
Programmiersoftware: AVRDUDE GUI	https://blog.zakkemble.net/avrdudess-a-gui-for-avrdude/
Programmiersoftware: AVRDUDE 6.3	Vorhanden in: \arduino-1.8.12\hardware\tools\avr\bin\avrdude.exe
	Konfigurationsdatei in: \arduino-1.8.12\hardware\tools\avr\etc\avrdude.conf

Tutorials

AVR-GCC-Tutorial	https://www.mikrocontroller.net/articles/AVR-GCC-Tutorial
WinAVR	https://www.mikrocontroller.net/articles/WinAVR
ArduinoISP	https://www.arduino.cc/en/Guide/ArduinoISP
AVR-Assembler lernen	http://www.avr-asm-tutorial.net/avr_de/absolute_beginner/starten/starten.html
Unterrichtsmaterial	https://www.rahner-edu.de/grundlagen/avr-assembler-teil-0/
AVR Assembler Einführung	https://rn-wissen.de/wiki/index.php?title=AVR Assembler Einf%C3%BChrung
Anfängerkurs G. Schmidt	http://www.avr-asm-download.de/beginner_de.pdf
AVR beginners	http://avrbeginners.net/
MICROCHIP	https://onlinedocs.microchip.com/pr/GUID-E06F3258-483F-4A7B-B1F8-69933E029363-en-US-2/index.html
MICROCHIP Defeloper	https://microchipdeveloper.com/8avr:start
Block Diagram	https://www.avrfreaks.net/forum/atmega328p-alu-and-multiplier-question?page=all