Neues Leben für alte Batterien

- Autor
- Zielgruppe
- Neues Leben für Batterien
- Testkriterien
- Batterietypen
- Idee einer Prüfanlage
- Prüfanlage Funktionen
- Mechanik
- Schiefe Ebene
- Revolver
- Messvorrichtung
- Lichtschranke
- Sortiereinrichtung
- Revolver/Schrittmotor
- Elektronische Bauteile

- Aktoren
- Schaltung
- Arduino-Pinbelegung
- Analoge Messwerte
- SD-Karte
- Schutzschaltung
- Eingangsspannung
- Stromversorgung
- Stromstärken
- Funktionen
- Inbetriebnahme
- Revolver justieren
- Anwender-Interface
- Prüfanlage Funktionen
- Libraries

Einführung

SchülerInnen	Projekt im Fach Technik.	
Kerncurriculum	Handlungsbereich 2: Energie und Technik.	
Unterricht	 Lernen durch Handeln. Methode Versuch und Irrtum. Handwerkliche Fähigkeiten. Mechanik, Elektronik, Programmierung. 	
Material	 Halbzeuge der UMT-Technik. Arduino, Steckbrett, diskrete Bauelemente. Sensoren und Aktoren. 	
Pilotanlage	Die vorgestellte Lösung ist eine von vielen!	
Projekt-Dateien	https://github.com/EKlatt/AAA-Tester	
UMT-Technik	https://technik-lpe.de/technik/	
AATIS	Praxisheft 33 (2023)	

Neues Leben für Batterien

Schulprojekt Taschenlampe	μTaLa LED-Taschenlampe mit AAA-Batterie.
AATiS Bausatz	AS332
Geschichte	Gebrauchte Batterien nutzen?
	Ausreichende Kapazität?
	AA-Batterien (AAA-Batterien)
	Funktionstest mit Voltmeter
	Mindestens 1,0 V
	Schülerversuche
Projektidee:	Wolfgang Lipps
Automatisierung	Prüfanlage für einen automatischen Betrieb.

Testkriterien

Stromaufnahme µTaLa:	I ≈ 10 mA	K1 L2
		L-220uH
Auslegung Lastkreis:		L1
Mindest-Spannung	U = 1 V	L-220uH
Last-Widerstand	R = U / I R = 100 Ω	
Angenommene Messdauer	30 s	
Entscheidung	Test-Spannung > 1,0 V, dann weitere Verwendung.	
Quelle	Microsoft Word - µTaLa-Aufl	bau (aatis.de)

Batterietypen

AA-Batterie	Alkali-Mangan, Zink-Kohle	
Durchmesser	13,5 mm bis 14,5 mm	
Länge	Länge von 49,2 mm bis 50,5 mm	
Nennspannung	1,5 V	
AAA-Batterie	Alkali-Mangan, Zink-Kohle	
Durchmesser	9,5 mm bis 10,5 mm	der
Länge	Länge von 43,3 mm bis 44,5 mm	Fläche
Nennspannung	1,5 V	The second s

Link

https://de.wikipedia.org/wiki/Mignon_(Batterie) https://de.wikipedia.org/wiki/Micro_(Batterie)

Idee einer Prüfanlage

Länge der schiefen Ebene ca. 600 mm (60 AAA-Batterien mit \approx 10 mm Ø)

Prüfanlage Funktionen

Einrichten	0.	Prüfvorrichtung vorbereiten.
Zuführen	1. 2. 3.	Batterie automatisch zuführen. Ist eine Batterie vorhanden? Batterie zur Messposition bewegen.
Messen	4. 5. 6.	Spannung prüfen. Haben wir eine gute oder leere Batterie? Batterie zur Sortierung bewegen.
Sortieren	7. 8.	Gute Batterie in Behälter "Gute Batterie". Leere Batterie in Behälter "Leere Batterie".
	9.	Weiter mit Schritt 1.

Mechanik

Mechanische Aufgaben?

- Bau einer "schiefen Ebene" mit einer glatten Oberfläche.
- Optimieren der Neigung.
- Bau eines Batteriewechslers (Revolver).
- Entwickeln einer Messvorrichtung für die Batteriespannung.
- Erkennen einer fehlenden Batterie (Endschalter/Lichtschranke).
- Bau einer Sortiereinrichtung (Falle).

Schiefe Ebene

Anforderungen	 Sicherer Transport der Batterien. Seitliche Führungen für AAA- und AA-Batterien. Einfache Bestückung.
Material	PVC-Hartschaumplatte 3 mm dick.
Neigung optimieren	 Sicheres Nachrutschen der Batterien. Der Revolver darf nur eine Batterie mitnehmen. Den Schrittmotor nicht überlasten.
Empfehlung	Die Neigung der schiefen Ebene minimieren. Neigung: ca. 20° zur Horizontalen.

Revolver

Anforderungen Batteriewechsler	 Sicherer Transport der Batterien. Anzahl der Bauteile und Antriebe minimieren. Einfacher Aufbau. Sichere Mitnahme einer Batterie. Einhalten der Messposition. Sicherer Transport zur Sortierung.
Randbedingungen	 Maße der AAA- und AA-Batterien. Lage der schiefen Ebene. Aufbau der Messeinrichtung. Lage der Falle.
Material	3D-Druck oder Hartholz-Zylinder.
Konstruktion	Nutformen für AAA- und AA-Batterien.
Empfehlung	3D-Druck
Link	https://github.com/EKlatt/AAA-Tester siehe Ordner "3D".

Messvorrichtung

Anforderungen	 Messen der elektrischen Spannung im Leerlauf und unter Last. Soll sich der Bauform der AAA- und AA-Batterie anpassen. Einen guten Kontakt an den Polen gewährleisten. 	
Material	Idee: Blechstreifen aus Federbronze.	
Herstellung	Blechstreifen von Hand geformt.	
Probleme	 Formgebung von Hand. Blechstreifen dürfen das Zuführen der Batterie nicht behindern. Automatische Anpassung an die beiden Bauformen. Kontaktschwierigkeiten in Folge unterschiedlicher Bauformen, insbesondere des Minus-Pols. 	

Lichtschranke

Anforderungen	 Die Prüfanlage soll automatisch betrieben werden. Solange eine Batterie vorhanden ist soll geprüft werden. Ist keine Batterie vorhanden, soll der automatische Betrieb anhalten.
Randbedingungen	Durchmesser der AAA- oder AA-Batterien.Lage des Revolvers.
Bauteil	Abstandssensor Modul einstellbar Digitaler Ausgang (0/1): "1" entspricht Batterien bereit.
vorher	Nach Umbau

Sortiereinrichtung

Anforderungen	Einsortierung in einen Behälter für gute oder leere Batterien.	
Randbedingungen	 Einfacher Mechanismus. Sichere Sortierung. Einfacher Antrieb. 	
Material	 PVC-Hartschaumplatte 3mm dick. UMT-Vierkantstab (12 mm x 12 mm). Servo. 	
Probleme	Lage (Neigung) zum Revolver.	
	Falle Falle Revolver Gute Batterien	

Elektronische Bauteile

Mikrokontroller

Arduino-UNO mit AVR[®] 8-bit Mikrokontroller.

Datenlogger

Data Logger Shield mit RTC. Das Shield wird auf den Arduino aufgesteckt.

	SD-Karte
LCD	LCD 16 x 2 mit LCM1602
MOSFET	FET N-channel IRF520
Diskrete Bauelemente	LED, Taster, Widerstände, Diode, Kondensator

Aktoren

Schrittmotor	28BYJ-48 Stepper Motor	
Schritte 1. Umdrehung	2048 ca. 220 mA	
Pinbelegung		
Stepper stepper(…, motor_pin_1, motor_pin_2, motor_pin_3, motor_pin_4)	Arduino Pin (2) (4) (3) (5)	
Servo	SG90	
Max. Moment	18 Ncm (1.8 kgf·cm)	Reverse and rever
Pinbelegung		
#define	servoPin (7)	

Arduino-Pinbelegung

Arduino Pin		Bauteil	Sketch
13	SCK	DatenLogger	
12	MISO	DatenLogger	
11	MOSI	DatenLogger	
10	SS	DatenLogger	
9		frei	
8		Lastkreis Ein/Aus MOSFET	stressPin
7		Servomotor	servoPin
6		frei	
5, 4, 3, 2		Schrittmotor	motor_pin_4, motor_pin_2, motor_pin_3, motor_pin_1
GND		Allgemein GND	
VIN		Externe Spannung	
A0		Spannungsmessung	voltagePin
A1		Taster Start	operationPin
A2		Taster Schrittmotor	stepPin
A3		Endschalter Batterie	stopAutoPin
A4	SDA	LCD 2x16, DatenLogger I ² C	LCD SDA, DatenLogger SDA
A5	SCL	LCD 2x16, DatenLogger I ² C	LCD SCL, DatenLogger SCL

Analoge Messwerte

Anforderungen	Erfassen der Spannungen im Bereich < 2 V.
Randbedingungen	 Spannung einer neuen Batterie <= 1,6 V.
	 Testspannung von 1,0 V. Sketch: compareVoltage = 1.0;
	 Arduino Referenzspannung 1,1 V. Sketch: analogReference (INTERN)
Spannungsteiler	Wegen der Referenzspannung von 1,1 V ist eine Spannungsteilerschaltung erforderlich.
AREF-Pin	Am AREF-Pin kann die tatsächliche Referenzspannung gemessen werden. Sketch: AREF_Voltage = 1.07
Analog-Digitalwandler	Umwandlung der Spannung (hier 0 bis 1,1 V) in die digitalen Werte von 0 bis 1023.
Berechnung im Sketch	<pre>readAnalog = AREF_Voltage/1023 * (readAnalog) * 2;</pre>

SD-Karte

Hinweis

Konfigurationsdatei	Auf der SD-Karte eine Datei mit dem Namen "config.ini" anlegen.			gen.	
Automatik-Betrieb	Die Parameter	in "config.ini" ü	berschreiben im Automatik-Betrieb die		
	voreingestellte	n Parameter vo	m Sketch.		
Achtung:	Die Parameter	werden nicht au	uf Plausibilität g	eprüft.	
Parameter	Nur die Werte	in "config.ini" ι	untereinander e	ingeben!	
Testspannung in V	1.0		(compareVolt	cage)	
Belastungsdauer in s	10		(referenceStressTime)		
AREF (gemessen) in V	1.07		(AREF_Voltage)		
Ladepunkt-Messposition	390		(stepsLoadTest)		
Messposition-Falle	350		(stepsTestT	rap)	
Protokolldatei	Die Datei "Exce	el.csv" auf der Sl	D-Karte anlegen	•	
	Der Sketch erze	eugt folgendes [Datenformat:		
Datensatz	Datum	Uhrzeit	Leerlauf-	Last-	gut / leer
			Spannung	Spannung	
Beispiel	28.09.2022;	12:21:35;	1,5;	1,44;	1 oder 0

Im Sketch werden C++-Werte (1.22) in Excel-Werte konvertiert (1,22).

Link

<u>https://www.youtube.com/watch?v=3rbn0pNoGa8</u>
https://www.programmingelectronics.com/power-arduino/

Stromversorgung

Arduino Stromversorgung	
DC-Jack (DC-Buchse)	7 V bis 12 V (mit Verpolungsschutz) empfohlen.
USB	5 V (meist kleiner).
VIN	7 V bis 12 V (ohne Verpolungsschutz).
5 V Pin	Keinesfalls machen!

Steckbrett Stromversorgung	
5 V Pin	5 V (reguliert über den Spannungsregler)
VIN	7 V bis 12 V (in Abhängigkeit von der DC-Buchse). Nicht empfohlen, da Sensoren und Aktoren meist 5 V benötigen.
Link	https://docs.arduino.cc/hardware/uno-rev3
	How do I power my Arduino? The Pi Hut

Stromstärken

Arduino Stromversorgung	
USB	500 mA (resettable polyfuse)
DC-Jack (DC-Buchse)	500 mA bis 1 A
VIN	500 mA bis 1 A
5V Pin	Keinesfalls machen!

Pins	
pro Pin	20 mA (absolute maximale Stromstärke 40 mA)
Σ digitale & analoge Pins	200 mA (d. h. maximal 10 LEDs mit 20 mA)

Verwendung als Spannungsquelle

5V Pin	500 mA (800 mA, abhängig vom Spannungsregler)
VIN	1 A in Abhängigkeit von der DC-Buchse. Nicht empfohlen!

Funktionen I

Tab	Aufgabe
AAA_Tester_Automatik	Deklarieren der Variablen
	Deklarieren der Pin-Belegung.
	Deklarieren der Parameter, die über "config.ini" vom Anwender verändert werden können.
	Erzeugen der Objekte: rtc, myServo, stepper, lcd
1_Setup	Initialisierung der Pins.
	Initialisieren der Objekte: lcd, stepper, rtc
2_Loop	Fragt in einer Endlosschleife die Taster "Start" und "Stepper" ab.
	Das erstmalige Drücken der "Start-Taste" führt allgemeinem Start und zum manuellem Terminal-Betrieb.
	Das nochmalige Drücken der "Start-Taste" führt zum Automatik-Betrieb (ohne PC).
	Das Drücken der "Stepper-Taste" lässt den Stepper jeweils 10 Schritte drehen, um die Positionierung des Revolvers zu ermöglichen.
3_Help	Ausgabe der "Terminal-Befehle" im Terminal/Monitor.
4_Terminal	Auswerten der "Terminal-Befehle" und veranlassen von Aktionen.
5_Automatic	Steuerung des Automatik-Betriebes.
	Anwender-Hinweise auf dem LCD und dem Terminal/Monitor).
6_Servo_Stepper	Steuerung von Servo- und Schrittmotor.
	Die Motoren werden stets (nach der Funktion) elektrisch entkoppelt.
7_Stress	Prüfen ob Batterie vorhanden.
	Prüfen der Batterie-Spannung.
	Ein- und Ausschalten des Lastkreises.

Funktionen II

Tab	Aufgabe
8_Time	Ermitteln von RTC-Datum und RTC-Uhrzeit.
	Zusammensetzen von Datum und Zeit für das SD-Karten Protokoll.
9_SD_Card	Lesen der "config.ini".
	Schreiben der "Excel.csv".
Echo	Anzeigen der Konfigurations-Parameter (nur Terminal/Monitor).
	Anzeigen der Fallen-Parameter (nur Terminal/Monitor).
	Anzeigen der gemessenen Spannung.
Serial	Definieren eines Ereignisses (event) zur Entgegennahme von seriellen Eingaben vom Terminal/Monitor.
	Verarbeitung der Eingaben zu Steuervariablen:
	controlLetter, stringCommand, controlValue

Inbetriebnahme		
Checkliste	•	Die Prüfanlage ist zusammengebaut.
	•	Der Arduino & Steckbrett sind mit den externen Komponenten verbunden.
	•	Die Software ist auf den Mikrocontroller übertragen worden.
	•	Die SD-Karte mit der "config.ini" und der "Excel.csv" ist vorbereitet und eingesteckt.
	•	Die Stromversorgung von Steckbrett & Arduino ist angeschaltet.
	•	Der Arduino ist per USB-Kabel mit einem PC verbunden.
	•	Die Arduino-IDE und der Arduino-Monitor sind geöffnet.

Revolver justieren

Achtung	Die jeweilige Revolver-Nut und die schiefe Ebene müssen fluchten.	
Mechanische Anpassung		
Länge Batterie	Die Breite der schiefen Ebene durch entfernen/einlegen von ungelochten UMT-Vierkantstäben (12 mm x 3 mm) anpassen.	
Revolver Nut	Der Revolver hat zwei Nuten. Eine Nute für AAA- und AA-Batterie.	
Justierung	Vor Beginn eines Prüflaufs muss die entsprechende Nut mit dem Ladepunkt gegenüber der schiefen Ebene ausgerichtet werden.	
Rechter Taster	Einmalige Betätigung lässt Revolver/Schrittmotor um 10 Schritte gegen den Uhrzeigersinn drehen.	
Terminal s-Befehl	Sinnvolle Werte: von (+1) bis (+2048) und (-1) bis (-2048). Befehl: "s:Schritte" Gegen den Uhrzeigersinn: "s:10". Im Uhrzeigersinn: "s:-10"	

Anwender-Interface

Anleitung		"AAA-Tester Anleitung.pdf" auf GitHub.		
Automatik-Betrieb		Betrieb mit Taster & LCD		
Test-Betrieb		Prüfanlage testen mit Monitor/Terminal.		
Monitor/Terminal-Befehle				
Befehl		Bedeutung		
Automatik	'a' or 'auto'	Einschalten des Automatik-Betriebes.		
Zeit?	'time'	Anzeigen von Datum und Uhrzeit.		
Lese config.ini	'r'	Einlesen der "config.ini" von der SD-Karte.		
Zeige config.ini	'i'	Anzeigen der aktuellen Parameter.		
Falle initialisieren	'ti'	Falle auf Position gute Batterie drehen.		
Batterie vorhanden?	'b'	Befindet sich eine Batterie an der Messposition.		
Anliegende Spannung	'V'	Messen und Ausgeben der Batteriespannung.		
Last-Kreis an/aus	'l' or 'load'	Lastkreis ein- und ausschalten.		
Syntax für Falle	't:90' or 'trap'	Drehen der Falle um Werte zwischen 0 bis 90 Grad.		
Syntax für Stepper	's:90' or 'stepper'	Drehen des Schrittmotors um sinnvolle Werte, ½ Drehung mit Wert 1024.		
Hilfe-Text	'h'	Liste der Monitor/Terminal-Befehle		

Prüfanlage Funktionen

	1.	Prüfvorrichtung anpassen
Ablauf einer Messung	2. 3.	Batterie laden (schiefe Ebene). Ladepunkt -> Messposition
Messen	4. 5. 6. 7. 8. 9. 10.	Batterie vorhanden? Falls keine Batterie vorhanden Automatik anhalten. Leerlauf-Spannung messen. Lastkreis schließen. Last-Spannung messen. Lastkreis öffnen. Gute oder leere Batterie?
Sortieren	11. 12. 13.	Messposition ···• Falle Gute Batterie in Behälter "Gute Batterie". Leere Batterie in Behälter "Leere Batterie".
	14.	Falle> Ladepunkt

Libraries

Installationsordner	"C:\Users\Public\Arduino"
Libraries-Ordner	"C:\Users\Public\Programme\arduino-1.8.19\libraries"
Download & Entpacken	U.g. Libraries herunterladen und entpacken.

Arduino-LiquidCrystal-I2C-library:

https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library/archive/refs/heads/master.zip

RTClib

https://github.com/adafruit/RTClib/archive/refs/heads/master.zip

Innerhalb der Arduino-IDE, Werkzeuge, Bibliotheken verwalten nach "Adafruit BusIO" suchen und diese installieren (I2C).