BEMFV

Norbert - DG7EAO dg7eao@darc.de - 0176 525 584 66

Herzlich Willkommen

BEMFV leichtgemacht

BEMFV = Verordnung zur Begrenzung elektromagnetischer Felder (2017)

Nahfeld-Simulation mit 4nec2 zur BEMFV DJ7UA / Mario EMV

4 | 20.04.2025

Watt32 – 80m Nahfeld = 12,7m

EMV

Nahfeldproblematik reaktives strahlendes Nahfeld Fernfeld λ 4λ Merke: Stark verkürzte und magnetische Antennen sollten im strahlenden Nahfeld durch Feldstärkenachweis abgesichert werden! Messung 2π Rechnung Simulation

> Nahfeld-Simulation mit 4nec2 zur BEMFV DJ7UA / Mario

80 m Nahfeld = 80 / 6,28 = 12,7 m

Nahfeldproblematik

Nahfeldproblematik

	Blatt 1		
23455			E
4 Wollard(Mid	14	14	14
1 Anterne	Yagi	Vagi	Yapi
2 Wastagehöhe der Anterne (m)	12	12	9.2
3 Hagtstablicturg[line]	NO	NO	NO
5 SedeleiningPDP3v3	50	216	212
6 Sendeat (Modulationcart)	Abaya	ALA.V.R.	ALANYA
8 Anterespectro(d)	2.81	2,41	2.41
9 Kabel-eikste (dl)	0.517	8,612	8,637
10 Veteblinstep(#)	0.00	0.00	0.00
12 Abstand Personemochaty	3,62	11.68	6,50
13 volh Schelhelsubstand	-	· · · ·	6.50
Geneinane Britel Spaler	r .	r .	F
hes	1		
7 Faktor F(modPen);	1.00	1.00	1,00
11 Falta F(E)	1,00	1,00	1,00
Ep@esonenschute[50/m]	29,00	28,00	28,00
Statkepleineg nav. ERP (v)	237,83	3567,48	1104.13
Pv1 grutningergeleintung ?v1	43.18	647.68	208.35

Software

- **Watt32** liefert keine verwertbaren Ergebnisse im reaktiven Nahfeld
- Die Wiesbeck Studie enthält nur wenige Antennenmodelle für das Nahfeld
- Wattwächter der BNetzA läuft nur unter Java
- Mit **4NEC2** sind vielfältige Simulationen im Nah- und Fernfeld möglich

Antennenskizze

Seitenansicht

Seitenansicht von Gumpertstr. aus gesehen

Seitenansicht

Quelle: DL6GLQ

9 | 20.04.2025

Draufsicht

10 | 20.04.2025

BEMFV

§ 8 Ortsfeste Amateurfunkanlagen

(1) Eine ortsfeste Amateurfunkanlage bedarf einer Standortbescheinigung nach § 5, wenn sich am vorgesehenen Standort der Anlage bereits ortsfeste Funkanlagen befinden, auf die die Regelungen des § 4 anzuwenden sind.

(2) Eine ortsfeste Amateurfunkanlage, an deren Standort eine Gesamtstrahlungsleistung (EIRP) von 10 Watt oder mehr erreicht wird, darf ansonsten nur betrieben werden, wenn

- 1. der standortbezogene Sicherheitsabstand innerhalb des kontrollierbaren Bereichs liegt,
- der Betreiber die Anlage nach § 9 angezeigt hat,
- 3. die Betriebsdaten die Anzeige- oder Antragsdaten nicht überschreiten und

 durch den Betrieb keine Personen, insbesondere Träger von aktiven Körperhilfen, gesundheitlich geschädigt werden können.

Bei Nichtbeachtung droht Busgeldbescheid !!!

10 Watt EIRF

Prüfungsfrage: Ein Sender mit 0,6 Watt Ausgangsleistung ist über eine Antennenleitung, die 1 dB Kabelverluste hat, an eine Richtantenne mit 11 dB Gewinn (auf Dipol bezogen) angeschlossen. Welche EIRP wird von der Antenne maximal abgestrahlt?

Von den 11 dB Gewinn ziehen wir die 1 dB Kabelverluste ab. Es bleiben 10 dB Gewinn, also ein Faktor 10 bei der Leistung. $P_{ERP} = 0,6 \text{ W} \cdot 10 = 6 \text{ W}$

Für die Berechnung der EIRP multiplizieren wir dies mit 1,64. PEIRP = 6 W \cdot 1,64 = 9,84 W

Aus 0,6 Watt Senderleistung sind fast 10 Watt Strahlungsleistung mittels einer Dipolantenne in den Hauptrichtungen geworden.

	bewertende Sendeantennen bei Standortmitbenutzungen; auch bei vorläufigen Standortbescheinigungen gemäß § 5 Abs. 4)	
A.3	Zusätzlich zu A.1 bei Betrachtung eines Standortes nach § 5 Abs. 3	Die Höhe der Gebühr bemisst sich nach dem tatsächlichen Aufwand anhand der Gebührennummern A.5.1 bis A.5.3.
A.4	Je zu bewertender Sendeantenne bei der Umwandlung einer vorläufigen in eine endgültige Standortbescheinigung	92
A.5	Zusätzlich zu den Gebührenpositionen A.2 bis A.4, wenn Messungen oder Nahfeldberechnungen erforderlich sind	Die Höhe der Gebühr bemisst sich nach dem tatsächlichen Aufwand anhand der Gebührennummern A.5.1 bis A.5.5.
A.5.1	Stundensatz für Beamte des höheren Dienstes	240,17
A.5.2	Stundensatz für Beamte des gehobenen Dienstes	169,37
A.5.3	Stundensatz für Beamte des mittleren Dienstes	129,82
A.5.4	Stundensatz für den Einsatz von Mess-Kfz (einschließlich messtechnischer Einrichtungen im Mess-Kfz)	57,26
A.5.5	Fahrleistung eines Mess-Kfz je Kilometer	0,23
B.	Sonstige Gebühren	Gebühr in Euro
B.1	Anzeige einer nicht bescheinigungspflichtigen Funkanlage gemäß § 11 Abs. 2	22
B.2	Zweitschrift einer Standortbescheinigung	25
C.	Betrieb einer Funkanlage ohne die erforderliche Standortbescheinigung oder unter Verstoß gegen deren Bestimmungen; Verletzung von Anzeige- und Dokumentationspflichten; Betrieb einer Amateurfunkanlage unter Verstoß gegen § 8 der Verordnung	Gebühr in Euro
C.1	Verwaltungsmäßiges Bearbeiten eines Verstoßes einschließlich Festlegen der Maßnahmen nach Aufwand	100 bis 2.000
C.2	Zusätzlich zu C.1 bei Ausführen eines mobilen Messeinsatzes	Die Höhe der Gebühr bemisst sich nach dem tatsächlichen Aufwand anhand der Gebührennummern A.5.1 bis A.5.5.

Grenzwerte (SSB) gemäß 26. BImSchV vom 14.08.2013

f (MHz)	Band	E (V/m)	H (A/m)
1,815	160	63,03	0,383
3,6	80	45,53	0,2
7,05	40	32,65	0,103
10,1	30	28	0,073
14,1	20	28	0,073
18,1	17	28	0,073
21,1	15	28	0,073
24,9	12	28	0,073
28,1	10	28	0,073
50,1	6	28	0,073
144	2	28	0,073
430	70 cm	28,67	0,071

Dipol, 2 x 5 m, 20m Band, 6 m Höhe, 300 Watt

	Watt32	Wiesbeck	Wattwächter
Gewinn	2,15 dBi	2,15 dBi	2,17 dBi
Sicherheits-Abstand	4,10 m	9,28 m	8,40 m

Watt32 Download

https://www.df3xz.de/watt32.html

Watt32 Datenblatt

	Blatt 1						
1 2 3 4 5 6	A	В	С	D	E	F	G
4 AFu-Band [MHz]	3,6	7	14	21	144		
1 Antenne	G5RV	G5RV	G5RV	G5RV	Yagi		
2 Montagehöhe der Antenne [m]	6	6	6	6	6		
3 Hauptstrahlrichtung [Grad]	0	0	0	0	0		
5 Senderleistung PEP [W]	100	100	100	100	100		
6 Sendeart (Modulationsart)	A1A/J3E	A1A/J3E	A1A/J3E	A1A/J3E	A1A/J3E		
8 Antennengewinn [dBi]	1,98	1,97	2,76	4,51	15,3		
9 Kabelverluste [dB]	0,39	0,42	0,49	0,55	1,06		
10 Winkeldämpfung [dB]	0,00	0,00	0,00	0,00	0,00		
12 Abstand Personenschutz	5,66*	6,07*	5,47*	3,09	10,08		
13 vorh. Sicherheitsabstand							
14 Gemeinsamer Betrieb Spalten:	Г	Г	Г				
Info	1						
Faktor F(modPers):	1,00	1,00	1,00	1,00	1,00		
1 Faktor F(B):	1,00	1,00	1,00	1,00	1,00		
g (Personenschutz) [V/m]	45,54	32,65	28,00	28,00	28,00		
Strahlungsleistung max. EIRP [W]	150,13	148,79	146,43	248,89	2654,61		
	04.54	93.09	89.25	88.10	78.34		

4 100

Watt32 Datenblatt – Rosa = innerhalb Nahfeld

	Blatt 1						
1 2 3 4 5 6	A	В	С	D	Е	F	G
4 AFu-Band (MHz)	3,6	3,6	14	21	28		
1 Antenne	Draht	Draht	Vertikal	Vertikal	Vertikal		
2 Montagehöhe der Antenne (m)	16	16	10	10	10		
3 Hauptstrahlrichtung [Grad]							
5 Senderleistung PEP [W]	750	750	750	750	750		
6 Sendeart (Modulationsart)	A1A/J3E	A1A/J3E	A1A/J3E	A1A/J3E	A1A/J3E		
8 Antennengewinn (dBi)	2,33	2,33	0,93	0,76	1,35		
9 Kabelverluste [dB]	0,519	0,519	0,525	0,574	0,624		
10 Winkeldämpfung (dB)	0,00	0,00	0,00	0,00	0,00		
12 Abstand Personenschutz	5,15*	4,06	5,61	5,47	5,82		
13 vorh. Sicherheitsabstand							
Gemeinsamer Betrieb Spalten:		Г	Г	Г	Г	Г	Г
Info	1						
7 Faktor F(modPers):	1,00	1,00	1,00	1,00	1,00		
11 Faktor F(B):	1,00	1,00	1,00	1,00	1,00		
Eg (Personenschutz) [V/m]	45,54	45,54	28,00	28,00	28,00		
Strahlungsleistung max. EIRP [W]	1138,15*	1138,05	823,31	782,82	886,46		
Antenneneingangsleistung [W]	665,58	665,52	664,60	657,15	649,62		

EMV

18 | 20.04.2025

Watt32 Datenblatt 750 - 100 - 10 Watt

	Blatt 1						
1 2 3 4 5 6	A	В	с	D	E	F	G
4 AFu-Band [MHz]	7	7	7	7	14		
1 Antenne	Dipol	Dipol	Dipol	M-Loop	Yagi		
2 Montagehöhe der Antenne [m]	10	10	10	2	10		
3 Hauptstrahlrichtung [Grad]	0	0	0	0	0		
5 Senderleistung PEP [W]	750	100	10	100	750		
6 Sendeart (Modulationsart)	A1A/J3E	A1A/J3E	A1A/J3E	A1A/J3E	A1A/J3E		
8 Antennengewinn [dBi]	2,15	2,15	2,15	0,4	7,36		
9 Kabelverluste [dB]	0,55	0,55	0,55	0,55	0,69		
10 Winkeldämpfung [dB]	0,00	0,00	0,00	2,35	0,00		
12 Abstand Personenschutz	6,57*	2,66*	0,37*	27,81*	11,55		
13 vorh. Sicherheitsabstand							
14 Gemeinsamer Betrieb Spalten:	Г	Г	Г	•	Г		Г
Info	-1						
7 Faktor F(modPers):	1,00	1,00	1,00	1,00	1,00		
11 Faktor F(B):	1,00	1,00	1,00	1,00	1,00		
Eg (Personenschutz) [V/m]	32,65	32,65	32,65	32,65	28,00		
Strahlungsleistung max. EIRP [W]	1084,44	144,59	14,46	130,96	3483,87		
Antenneneingangsleistung [W]	661,01	88,13	8,81	88,13	639,83		

Watt32 – 80m Nahfeld = 12,7m

EMV

Nahfeldproblematik reaktives strahlendes Nahfeld Fernfeld λ 4λ Merke: Stark verkürzte und magnetische Antennen sollten im strahlenden Nahfeld durch Feldstärkenachweis abgesichert werden! Messung 2π Rechnung Simulation

> Nahfeld-Simulation mit 4nec2 zur BEMFV DJ7UA / Mario

80 m Nahfeld = 80 / 6,28 = 12,7 m

Watt32 – Nahfeld mit Wiesbeck Studie

Watt 1	Sendeart	Kabel	_ ľ	Antenne
Winkel	Wiesbeck	User	Ч	
icherheitsabstandsbe Wiesbeck Antenne Dipol verk. Dipol W3DZ Inverted V FD4 4-BTV GPA50 Quad AMA Loop 1.7m	z Antenne Directivi Abweick Modulal Wiesbe Ant. Ein	I nach Wiesbeck ng mit folgenden Par IHz] ihy Spalte A ity Wiesbeck Ant. hende Directivity ion ck EIRP gangsleistung [W]	ameter	3,5 10 2,15 2,15 2,15 A1A/J3E 1104,72
C AMA Loop 3.4m FB53 FBD0-505 Antenne löschen	Sicherh Sicherl Wiesbe Fernfel reaktive	eitsfaktor FSi neitsabstand eck d s Nahfeld bis (m)		1,4142

Die Wiesbeck Studie enthält nur wenige Antennen

Watt32 – Wiesbeck Studie Magnetic Loop

ei Optionen Winkel	Into Hilfe		
Watt	Sendeart Kabel	Antenne	
Winkel Wi	esbeck User		
Sicherheitsabstandsber Wiesbeck Antenne	Berechnung Nahfeld nach Prof. Wies	ametern	
C Dipol	Band [MHz]	7	
C verk. Dipol W3DZZ	Antennenhöhe über Grund	2	
C Inverted V	Directivity Spalte D	0,4	
C FD4	Directivity Wiesbeck Ant.	1,72	
C 4-BTV	Abweichende Directivity		
C GPA50	Modulation	A1A/J3E	Magnetic Loo
C Quad	Wiesbeck EIRP	130,96	7 MHz = 100 MHz
AMA Loop 1.7m	Ant. Eingangsleistung [W]	88,10	7 10112 1000
C AMA Loop 3.4m	Sicherheitsfaktor FSi	1,4142	
C FB53	Sicherheitsabstand		
C FBDO-505			
C keine WiesAntenne	Wiesbeck (im Nahfeld gültig)	27,81*	
	Fernfeld	1,26	
	reaktives Nahfeld bis [m]	6,72	
	Antenne im Datenblatt: Loop	1.7m	
Wiesbeck löschen	Übernahme ins Berech	inen	

Watt32 – Option Winkeldämpfung

ei Optio	nen Winke	el Info Hilfe		~	
Wat	t	Sendeart	Kabel	_ ľ	Antenne
Winke	i î	Wiesbeck	User	٢	
Winkel*	Dämpfung	EIRP [W]	Abstand [m]		
0°	0,00	3483,87	11,55		
10°	0,08	3420,28	11,44		
20*	0,34	3221,52	11,10	L	
30*	0,78	2911,13	10,55		
40°	1,41	2518,03	9,82		
50°	2,26	2070,43	8,90		
60°	3,33	1618,31	7,87		
70°	4,67	1188,67	6,74		
80°	6,28	820,47	5,60		
90°	8,19	528,52	4,50		
Anzeige Tabelle C Diagra	ej	Antennenmor H-Plane Patte	ntage rn Œh Cv	orizontal p ertikal pola	olarisiert risiert
C Seiten	ansicht	Antenne		dBi	MHz
Masth	öhe 10m	Optibeam OB1	0-3W	7,36	14
	Winkeldatei:	Optibeam OB1	0-3W.ang		
	watt32 Winke	eidaten: DF3XZ			
Hilfo	1			1	

Watt32 – Betriebsarten

Gebräuchliche Sendearten im Amateurfunk

Anlage 3

Hinweis

Die folgende Liste bietet eine "Übersetzung" der im Amateurfunk gebräuchlichen Bezeichnung der Sendearten in die ITU Terminologie. Für jede Sendeart werden die entsprechenden Umrechnungsfaktoren aus der DIN EN 50413 (Ausgabe August 2009) angegeben, die für die Berechnung der Sicherheitsabstände Personenschutz FmodPers erforderlich sind.

Bezeichnungen der Sendearte	n im Amateurfunk		Sendeart ITU	Umrechnungsfaktor DIN EN 50413, PEP in P _M
Morsetelegraphie	CW	Continuous Wave	A1A	1
Phonie	FM	Frequency Modulation	F3E	1
Phonie	SSB (USB/LSB)	Single Side Band (Upper/Lower Side Band)	J3E*	1
Phonie	AM	Amplitude Modulation	A3E	0,38
Packet Radio	AFSK/FSK (PRFM)	Audio Frequency Shift Keying (Packet Radio FM)	F2D, J2D*	1
Fernschreiben	RTTY	Radio Teletype	J2B*, F1B, F2B	1
Fernschreiben	Fax	Facsimile	F1C, F3C, J3C*, J2C*	1
Fernschreiben, Datenfunk	AMTOR	AMateur Teleprinting Over Radio	J2B*, F1B, F2B	1
Fernschreiben, Datenfunk	PACTOR	PACket Teleprinting On Radio	J2B*, F1B, F2B	1
Amateurfunkfernsehen	ATV	Amateur TV	A3F	0,38
Amateurfunkfernsehen	SATV		C3F	0,54
Amateurfunkfernsehen	FM-ATV		F3F	1
Amateurfunkfernsehen	SSTV	Short Scan TV	J3F*	1

*) Zu dieser Sendeart gibt die DIN EN 50413 den folgenden Hinweis: "Es wird vorausgesetzt, dass der Träger nahezu vollkommen unterdrückt ist und dass bei Modulation mit einem Ton in einem Seitenband die Spitzenleistung des Senders erreicht werden kann."

Wattwächter von BNetzA

FMV

Wattwächter von BNetzA installieren

sivetza Watt Wachner				
Andreef Sugerier Adventingenier	vat viz	0 vom 12.02.20	h1	ter
Das Bewert. Das Programm den	ingsprogramm Wattwächter en t zur Bewertung von Antenner	tstand in Auftra konfigurationen	ig der Bundesi von Amateurf	netzagentur. funkstellen nach der
Das Bewertu Das Programm dien Verordnung über	ngsprogramm Wattwächter er t zur Bewerbung von Antenner das Nachweisverfahren zur Be	ntstand im Auftra konfigurationen egrenzung elektro	ig der Bundes von Amateurf omagnetische	netzagentur. funkstellen nach der r Felder (BEMPV).
Das Bewertu Das Programm den Verordnung über Merkmal	ngsprogramm Wattwächter en t zur Bewertung von Antenner das Nachweisverfahren zur Be	ntstand im Auftra ikonfigurationen egrenzung elektro	ig der Bundesi von Amateurf omagnetische Assistent	netzagentur. funkstellen nach der r Felder (BEMPV). erweiterter Modus
Das Bewerts Das Programm den Verordnung über Merkmal Anzeige der Schutzzone	ngsprogramm Wattwächter en t zur Bewertung von Antenner das Nachweisverfahren zur Be	ntstand im Auftra konfigurationen egrenzung elektri	ig der Bundesi von Amateurf omagnetische Assistent	netzagentur. funkstellen nach der r Felder (BEMPV). erweiterter Modus
Das Bewerts Das Programm den Verordnung über Merkmal Anzeige der Schutzzone Anzeige der el. und magn.	ngsprogramm Wattwächter en t zur Bewertung von Antenner das Nachweisverfahren zur Br	ntstand im Auftra konfigurationen egrenzung elektri	ig der Bundes von Amateurf omagnetische Assistent	netzagentur. funkstellen nach der r Feider (BEMPV). erweiterter Modus
Das Bewerts Das Programm den Verordnung über Merimal Anzeige der Schutzzone Anzeige der el. und magn. Schutzabstand in beleibige	ngsprogramm Wattwächter en t zur Bewertung von Antenner das Nachweisverfahren zur Be Feldstarken n Schnittebenen (zusätzlich zu	ntstand im Auftra konfigurationen egrenzung elektro horizontal und	ig der Bundesi von Amateurf omagnetische Assistent	netzagentur. funkstellen nach der r Felder (BEMPV). erweiterter Modus
Das Bewerts Das Programm den Verordnung über Mericnal Anzeige der Schutzzone Anzeige der el. und magn. Schutzabstand in belebige Drehung um Anternenläng Drehung um Anternenläng	ngsprogramm Wattwächter en t zur Bewertung von Antenner das Nachweisverfahren zur Be Feldstärken m Schnittebenen (zusätzlich zu pachte (Polarization)	itstand im Auftra konfigurationen egrenzung elektro horizontal und	ig der Bundes von Amsteurf omagnetische Assistent	netzagentur. funkstellen nach der r Felder (BEMPV). erweiterter Modus
Das Bewerts Das Programm den Verordnung über Merional Anzeige der Schutzzone Anzeige der el. und magn. Schutzabstand in belebige Drehung um Anternenlang Bodenneflexionsfaktor eins deschafteser Betrisch melor	ngsprogramm Wattwächter en t zur Bewertung von Antenner das Nachweisverfahren zur Br Feldstärken n Schnittebenen (zusätzlich zu sachse (Polarization) teilbar erer Antennen	itstand im Auftra konfigurationen egrenzung elektri horizontal und	ig der Bundes von Anateur omagnetische Assistent	netzagentur. funkstellen nach der r Felder (BEMPV). erweiterter Modus
Das Bewerts Das Programm den Verordnung über Merichal Anzeige der Schutzzone Anzeige der el. und magn. Schutzabstand in belebige Drehung um Antennenläng Bodenreflexionsfaktor eins gleichantiger Betrieb mehr zusätzliche Antennen erste	ngsprogramm Wattwächter en t zur Bewertung von Antennen das Nachweisverfahren zur Be Feldstarken n Schnittebenen (zusätzlich zu jaachoe (Polarization) stelbar erer Antennen elen und editeren	itstand im Auftra konfigurationen egrenzung elektro horizontal und	g der Bundes von Amateurf anagnetischer Assistent	netzagentur. funkstellen nach der r Feider (BEMPV). erweiterter Modus
Das Bewerts Das Programm dien Verordnung über Merional Anzeige der Schutzzone Anzeige der el. und magn. Schutzabstand in belebige Drehung um Anternenläng Bodenreflexionsfaktor eins gleichzeitiger Betrieb mehr zusätzliche Anternen erste	ngsprogramm Wattwächter en t zur Bewertung von Antenner das Nachweisverfahren zur Be Peldstärken in Schnittebenen (zusätzlich zu jsachse (Polarization) telbar erer Antennen elen und editeren Beide Modi sind bezüglich di	tstand im Auftra konfigurationen egrenzung elektri horizontal und es Engebnisses gi	ig der Bundes von Amateurf omagnetische Assistent	netzagentur. funkstellen nach der r Felder (BEMPV). erweiterter Modus

Download Wattwächter Zip 830 MB

Download Open JDK

Info Open JDK unter Win 10 installieren

Wachtwächter starten:

- Download oder installiere **Open JDK** (falls bisher kein Java installiert)
- Wechsle in das Verzeichnis mit Wattwächter
- Führe von Commandline aus: java -jar wattwaechter_2.01.jar

Wattwächter Datenblatt

	BNetzA Watt Wächter - ,	/home/norbert/Dokume	ente/Wattwächter/Test1	/G5RV.xml (erweiterter M	Aodus) 💷 🔍
Datei Über					
	A X	В	c x	D X	Bundesnetzagentur
Antenne					Referat 414
Antenne	G5RV5-Band	G5RV5-Band	G5RV5-Band	20813	
Antennengewinn [dBi]	1,98	2,72	3,28	15,30	
Feld-Daten	NEC	NEC	NEC	Isotropic	
* eigene Antennendaten					
Antennenstandort und Ausrich	tung				
Standort der Antenne	0m S 0m W	0m S 0m W	Om S Om W	0m S 0m W	
Hauptstrahlrichtung [Grad]	0,0	0,0	0,0	0,0	Benutzerdation
Antennenhöhe [m]	6,00	6,00	6,00	6,00	4 Antennen
Senderdaten					
AFu-Band [MHz]	3,7	7,1	14,2	144,0	
Sendeleistung PEP [W]	100,0	100,0	100,0	100,0	
Modulation und Tx/Rx-Zyklus	SSB 6/0	SSB 6/0	SSB 6/0	SSB 6/0	
Leitungsverluste [dB]	1,11	1,15	1,22	1,76	Alle Antennen aktivieren
EIRP [W]	122	143	161	2261	Alla Astanaa daaktiisiaraa
Ergebnis					Alle Alleennen deaktivieren
Faktor F(B)	(1,00)	1,00	1,00	1,00	Benutzerdaten
Faktor F(modPers)	1,00	1,00	1,00	1,00	
Schutzabstand (Pers) **	19,76	18,55	18,26	18,29	Berechnen
** ab Speisepunkt					Seite 1/6
Antenne aktiv					< — >

Wattwächter Berechnung Schutzbereich

EMV

Schutzbereich mit Maus ermitteln, berechnet wird sonst der Abstand zur Einspeisung!

28 | 20.04.2025

EMV

Praxis

* optional

Wattwächter – Anzeige erstellen

Blatt 1 von 3

Anzeige einer ortsfesten Amateurfunkanlage nach der Verordnung über das Nachweisverfahren zur Begrenzung elektromagnetischer Felder

(nach § 9 BEMFV)

Standort der ortsfesten Amateurfunkanlage:

 Huffmannstr.
 76
 45239
 Essen

 (Btratile / Genariung)
 (Haus-Nr. / Flur / Flurstick)
 (PL2)
 (Ort)

Betreiber der ortsfesten Amateurfunkanlage:

Norbert Redeker		Redeker	0201 405910
Name, Voman	ne)	(Telefon) *	
Huffmannstr. 76			info@redeker-web.de
Strate, Haust	ummer)		(E-Mai)*
45239	Essen		
PLZ, 04)			
DG7EAO			A
Rufzeichen)			(Amateurfunkzeugnisklasse)

Erste Anzeige der o.g. ortsfeste Amateurfunkanlage.

Die o.g. ortsfeste Amateurfunkanlage wurde bisher <u>1</u> mal angezeigt.

Diese Anzeige ersetzt die vom:

Die mit' gekennzeichneten Feider sind freiwillige Angaben, alle anderen Angaben müssen volständig sein. Fehlende Angaben führen zur Nichtannahme der Anzeige.

Die vorformulierten Erklärungen dürfen nicht ergänzt oder verändert werden.

Der Einsatz von speziel zur Anzeige angebotenen Softwarehilfen entbindet den Anzeigenden nicht von seiner Verantwortung für die Richtigkeit seiner Angeben.

Wattwächter – Anzeige erstellen

EMV

Blatt 2 von 3

DG7EAO	23.01.2018
Rufzeichen, Datum	

Erklärungen zu § 8 BEMFV

Personenschutz

Hiermit erkläre ich,

dass der größte für meine ortsfeste Amateurfunkanlage erforderliche standortbezogene Sicherheitsabstand innerhalb des von mir kontrollierbaren Bereiches endet. Weiter erkläre ich, dass beim Betrieb meiner ortsfesten Amateurfunkanlage die in der Konfiguration angegebenen Werte nicht überschritten werden.

Ich habe eine maßstäbliche Skizze des von mir kontrollierbaren Bereiches als Anlage beigefügt. In die Skizze habe ich alle relevanten standortbezogenen Sicherheitsabstände eingezeichnet.

Sonstige Angaben

1. Die Sicherheitsabstände habe ich ermittelt mit

X WattWächter

Vereinfachtes Bewertungsverfahren

Feldstärkemessung

Fernfeldberechnung

Nahfeldberechnung

2. Bei Verwendung von WattWächter

Die von WattWächter für diese Anzeige erzeugte XML-Datei DG7EAO_2018-01-23_5E56869B00809C79.xml

werde ich auf Anforderung der BNetzA zur Verfügung stellen.

31 | 20.04.2025

Wattwächter – Anzeige erstellen

EMV

Blatt 3 von 3

23.01.2018

3.	Ang	aben zur bereitzuhaltenden Dokumentation
	Dier	nach BEMFV geforderte Dokumentation besteht aus:
	\times	Dokumentation über die Einhaltung der Anforderungen nach § 8 Abs. 2 und 3 mit3
		Seiten
	\times	Antennendiagramm mit 3 Seiten
	\times	Lageplan und ggf. Bauzeichnung mit 2 Seiten
	\times	Konfiguration der Funkanlage mit 1 Seiten
		mit Seiten
		mit Seiten

Diese Anzeige umfasst insgesamt: 12 Seiten

(Unterschrift)

Wattwächter – Skizze

Skizze

Bundesnetzagentur: Hinweise zur zeichnerischen Darstellung des kontrollierbaren Bereichs

- Für die Darstellung ist keine offizielle Karte und auch kein Auszug aus dem Bebauungs- oder Nutzungsplan erforderlich. Es reicht aus, wenn eine selbstgefertigte Skizze eingereicht wird.
- Zur Nachvollziehbarkeit ist es erforderlich, dass die Skizze maßstäblich ist.
- Die Grenze des kontrollierbaren Bereichs muss maßstäblich eingezeichnet sein. Wenn der kontrollierbare Bereich "dreidimensional" ist (z.B. in einer gewissen Höhe über Grund größer als in Erdbodennähe), so muss dies erläutert sein. Dies kann ggf. auch durch eine geeignete Skizze erfolgen.
- Rechnerische Ermittlung:

Der größte standortbezogene Sicherheitsabstand (in Bezug auf den kontrollierbaren Bereich) muss in die Skizze eingezeichnet werden und darf nicht über die Grenze des kontrollierbaren Bereichs hinausreichen.

Messtechnische Ermittlung:

Der standortbezogene Sicherheitsabstand ist darzustellen, in dem die gewählten Messpunkte in der Skizze so verbunden werden, dass der überprüfte Bereich innerhalb des kontrollierbaren Bereichs erkennbar ist.

 Die Nutzung der umliegenden Grundstücke muss in dieser Skizze nicht angegeben sein (Die Angabe der Nutzung erfolgt im Lageplan, der im Rahmen des Anzeigeverfahrens bei der ortsfesten Amateurfunkanlage bereitzuhalten ist).

EMV

Blatt 1

Konfiguration der ortsfesten Amateurfunkanlage

Redeker Norbert	DG7EAO	A	Huffmannstr. 76	45239 Essen
(Name)	(Rufzeichen)	Zeugnisklasse	(Straße)	(Plz, Wohnort)

Standort der ortsfesten Amateurfunkanlage:

Huffmannstr. 76	45239	Essen
(Straße oder Gemarkung)	(PLZ)	(Ort)

konfiguration	A	B	C	D	E	F	G
Antenne:	Fritzel GPA-30	Optibeam OB15-	Kaeferlein AMA1	Sonstige Halbwe			
Montagehöhe der Senderantennenunterkante über Grund in Metern:	3.00	10.00	2.00	10.00			
Hauptstrahlrichtung N über O in Grad:	0.0	0.0	0.0	0.0			
Betriebsfrequenz in MHz:	14.0	14.175	14.0	14.175			
Senderleistung (Spitzenleistung, PEP) in Watt:	100.00	750.00	100.00	100.00			
Sendeart (Modulationsart):	SSB	SSB	SSB	SSB			
Faktor From Process	1.0	1.0	1.0	1.0			
Aquivalenter isotroper Antennengewinn in dB;	1.60	5.88	1.44	2.17			
Verluste zwischen Senderausgang und Antenneneingang in dB:	0.22	0.56	0.00	0.45			
ggf. Winkeldämpfung in dB:							
ggf. Faktor Fa:	0.33	0.33	0.33	0.33			
Sicherheitsabstand Personenschutz in Metern:	4.42	8.96	4.75	2.11			
	konfiguration Antenne: Montagehöhe der Senderantennenunterkante über Grund in Metern: Hauptstrahlrichtung N über O in Grad: Betriebsfrequenz in MHz: Senderleistung (Spitzenleistung, PEP) in Watt: Sendeart (Modulationsart): Faktor Fmodem: Äquivalenter isotroper Antennengewinn in dB; Verluste zwischen Senderausgang und Antenneneingang in dB: ggf. Winkeldämpfung in dB: ggf. Faktor F _B : Sicherheitsabstand Personenschutz in Metern:	konfiguration A Antenne: Fritzel GPA-30 Montagehöhe der Senderantennenunterkante über Grund in Metern: 3.00 Hauptstrahlrichtung N über O in Grad: 0.0 Betriebsfrequenz in MHz: 14.0 Senderleistung (Spitzenleistung, PEP) in Watt: 100.00 Sendeart (Modulationsart): SSB Faktor Fmothen: 1.0 Áquivalenter isotroper Antennengewinn in dB;: 1.00 Verluste zwischen Senderausgang und Antenneneingang in dB: 0.22 ggf. Faktor F ₈ : 0.33 Sicherheitsabstand Personenschutz in Metern: 4.42	Konfiguration A B Antenne: Fritzel GPA-30 Optibeam OB15- Montagehöhe der Senderantennenunterkante über Grund in Metern: 3.00 10.00 Hauptstrahlrichtung N über O in Grad: 0.0 0.0 Betriebsfrequenz in MHz: 14.0 14.175 Senderleistung (Spitzenleistung, PEP) in Watt: 100.00 750.00 Senderleisturg (Spitzenleistung, PEP) in Watt: 100.00 750.00 Sendeart (Modulationsart): SSB SSB Faktor Fmotham: 1.0 1.0 Äquivalenter isotroper Antennengewinn in dB;: 1.00 5.88 Verluste zwischen Senderausgang und Antenneneingang in dB: 0.22 0.56 ggf. Faktor F _B : 0.33 0.33 Sicherheitsabstand Personenschutz in Metern: 4.42 8.96	Konfiguration A B C Antenne: Fritzel GPA-30 Optibeam OB15 Kaeferlein AMA1 Montagehöhe der Senderantennenunterkante über Grund in Metern: 3.00 10.00 2.00 Hauptstrahlrichtung N über O in Grad: 0.0 0.0 0.0 0.0 Betriebsfrequenz in MHz: 14.0 14.175 14.0 Senderleistung (Spitzenleistung, PEP) in Watt: 100.00 750.00 100.00 Senderleistung (Spitzenleistung, PEP) in Watt: 1.00 1.0 1.0 Faktor F _{mot} /an: 1.0 1.0 1.0 1.0 Áquivalenter isotroper Antennengewinn in dB: 1.80 5.88 1.44 Verluste zwischen Senderausgang und Antenneneingang in dB: 0.22 0.56 0.00 ggf. Winkeldämpfung in dB: ggf. Faktor F _B : 0.33 0.33 0.33 0.33 Sicherheitsabstand Personenschutz in Metern: 4.42 8.96 4.75	Konfiguration A B C D Antenne: Fritzel GPA-30 Optibeam OB15 Kaeferlein AMA1 Sonstige Halbwe Montagehöhe der Senderantennenunterkante über Grund in Metern: 3.00 10.00 2.00 10.00 Hauptstrahlrichtung N über O in Grad: 0.0 0.0 0.0 0.0 0.0 Betriebsfrequenz in MHz: 14.0 14.175 14.0 14.175 Senderleistung (Spitzenleistung, PEP) in Watt: 100.00 750.00 100.00 100.00 Senderleistung (Spitzenleistung, PEP) in Watt: 100.00 750.00 100.00 100.00 Senderleistung (Spitzenleistung, PEP) in Watt: 1.00 1.0 1.0 1.00.00 Sendert (Modulationsart): SSB SSB SSB SSB SSB Faktor F _{nodition} : 1.00 5.88 1.44 2.17 Verluste zwischen Senderausgang und Antenneneingang in dB: 0.33 0.33 0.33 0.33 gif. Faktor F _n : 0.33 0.33 0.33 0.33 0.33	Konfiguration A B C D E Antenne: Fritzel GPA-30 Optibeam OB15 Kaeferlein AMA1 Sonstige Halbwe	Konfiguration A B C D E F Antenne: Fritzel GPA-30 Optibeam OB15 Kaeferlein AMA1 Sonstige Halbwe

Für jede Sendekonfiguration bitte eine Spalte ausfüllen. Die Spalten sind in alphabetischer Reihenfolge fortlaufend zu kennzeichnen.

Anlagen - Beschreibung

Feldstärkemessung mit PWRM1

PWRM1 von Firma SAT-Schneider

EMV

E- und H-Feldstärke – Messung

Feldstärkemessung mit PWRM1

EMV

X-Ebene

Y-Ebene

Z-Ebene

Anzeige in dBm

Elektrische Felder

Anzeige + 70 addieren = dBV/m MB: 0 dBV/m (1 V/m) ... 85 dBV/m (17782 V/m)

Magnetische Felder

Abzeige = dBA/m MB: -70 dBA/m (0,32 mA/m) ... 15dBA/m 5600 mA/m E/H-Feldstärke = Wurzel aus (X²+Y²+Z²) Vm/Am

Feldstärkemessung mit PWRM1

ei Datenblatt	Messgerat	Into UKW	into Hilfe				
essgerät und M	Messeinheiten	wählen, ers	st danach Mes	sswerte eingebe	en		
ess-Einheiten	Band, Sende	eistung und A	ntenne währen	d der Messung			
E-Feld	DG7EAO	Anter	nne				
V/m	AFu Band [M	Hz] Mess	leistung [W]	AFu-Band		Zum M	essgerät
• dB[V/m]	144	▼ 10	0	2m			
- Anzeige	1						
dBm	Eingabe der f	eldstärkernes	sungen je Mess	punkt			
I-Feld	Messpunkt	E(mess)	dB[AV/m]	E	н		
A/m	MP 01-10			% vom zulässi	gen Grenzwert		
mA/m	MP 1	26,02	-23,1	71 %	96 %	Bere	chnen
• dB[A/m]	MP 2	22	-17	45 %	193 %		
dB[mA/m]	MP 3					Messwer	te löschen
~ Anzeige	MP 4					Personenschu	tz Grenzwerte
dBm	MP 5					PSE[V/m]	PSH [A/m]
luswertung	MP 6		<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	28,00	0,073
nurE	MP 7			· · · · · · · · · · · · · · · · · · ·	<u> </u>	a Valiaba Can	dadaish wa Du
nurH	MD 8		<u> </u>		_	mogliche Send	27 W
E und H	MPO		<u> </u>		_	CWISSB	21 11
	MP 9					AM	70 W
1eßpunkte	MP 10					FM	27 W
• MP 01-10	Canda Fred						
MP11-20	100 % • T	x6 - BX0 C	TX5 - BX1	C TX4 - BX2 (TX3-BX3	C TX2-BX4	C TX1 - BX
MP 21-30		10 1110	102-1101	. 104-1056 .	100 100	· 1/36 · 1/34	- 101-110

https://www.openstreetmap.de/karte.html

39 | 20.04.2025

EMV

Kontrolierbarer Bereich 50 x 20 m

Sicherheitsbereich 3m Abstand zur Antenne

Dipol 80m 2x20m

Abstand Antenne zum Nachbarhaus: 30m

Geo Portal NRW

EMV

https://www.geoportal.nrw/?activetab=map

Vertiefung durch EMV Workshop optional

Workshops über ... ?

4-NEC2

EZNEC

BEMFV-4-NEC2

EZNEC Nahfeldberechnung

D Near F	ield Data				_	- 0	×
File Edit	Search Form	at Help					
Dipole i	n free spac	e		88.18.28	24 23:04	:50	^
	*******	NEAR-	FIELD PATTERS	DATA			
Frequenc	y - 14,1 H	12					
Power -	100 watts						
Max fiel at X,V,	d = 26,6998 Z = 2, 4, 1	V/n RHS					
Electric	(E) Field	(U/n RHS)					
X (n)	¥ (m)	2 (m)	Ex Hag	Ey Hag	Ez Hag	Etot	
2		10	4,13346-8	13,2949	3,2466-18	13,2949	
2	1	10	8,98101	12,7891	0,108119	15,6279	
2	2	10	16,8664	11,7633	0,214307	28,5644	
2	3	10	22,4341	11,0805	0,315802	25,0233	
2	4	10	23,9399	11,815	0,410109	26,6998	
2	5	10	19,5966	13,4858	0,495171	23,7484	

Dipol 14 MHz - 2 x 5,2 m

	IPOL_14	MHZ.NEC - 4ne	ec2 Edit (file	changed)										x
File	Cell	Rows Select	ion Optio	ns										1
									27555 VI		Upo	d Ins.	Del.	
1	Sym	nbols	Geo	metry		Source/Lo	ad ľ	Fred	1./Ground	<u> </u>	Others	Ĭ.	Comment	
Ge	ometry	(Scaling=Meter	s)		055							Г	Use wire tap	ering
Nr	Туре	Tag	Segs	X1	Y1	Z1	X2	Y2	Z2	Radius			comment	
1	Wire	1	41	0	-len	10	0	len	10	3.e-3				
	I													
			-											

DIPOL_14MHZ.NEC - 4nec2 Edit (file changed)				
File Cell Rows Selection Options				
Symbol/Variable with value or equation			Upd _	Ins. Del 🖫 🔳
Symbols Geometry	Source/Load	Freq./Ground	Others	Comment
Symbols				
Nr Symbols and equations	comment			
1 len=5.199407				
Scaling Wave-	-			
(Meters C Feet C Inch C lenght C Lu:	stom Factor [1.0			

Dipol 14 MHz - 2 x 5,2 m

2	Cell Rows	Selection	Options								
										Upd 🗆	Ins. Del 💟
	Symbols		Geome	stry	Sourc	e/Load	Fre	eq./Ground		Others	Comment
ou	rce(s)								Show so	urce 🗆 Show lo	ads 🔲 Show Tr-lin
٩r.	Туре	Tag	Seg	(opt)	Real	Imag	Magn	Phase	(nom)	comment	
1	Voltage-sic	1	21	0	1	0	1	0	0		

			and the second sec
Start) Frequency in Mhz		E	Upd Ins. Del 🖼
Symbols Geometry Source/Loar	Freq./Ground	Others	Comment
Frequency	Ground screen		
Frequency 14 Mhz	Nr of radials 0		
Nr steps Sweep	Radial length	mbr	
Stepsize	Wire radius	mm	
Environment	Second ground		
Ground / Real ground	Ground type		¥.
Connect wireful for Z=0 to ground	Conductivity		
	Diel constant		
Main ground	Distance mtr		
Ground type Moderate	Depth Depth retr		
Conductivity 0.003	Coher I me		
Diel constant	C Circular boundary		
	C Perpendicular to Y-axis		

Dipol 14 MHz - 2 x 5,2 m - 100 W

👔 Main [V5.	8.16] (F2)	Dense (Spa	- • ×
File Edit	Settings Calculate	Window Show	w Run Help
6 0 %	🕲 3D 🛃 🛞 🖄) 😥 😥	11 🛄 😲
Filename	DIPOL_14MHZ.out	Frequency Wavelength	14 Mhz 21.41 mtr
Voltage	84.2 + j 0 V	Current	1.19 + j 2e-3 A
Impedance Parallel form S.W.R.50 Efficiency Radiat-eff. RDF [dB] Environment GROUND PL FINITE GROUND RELATIVE D CONDUCTIV COMPLEX D	70.9 - j 0.11 70.9 // - j 5.e4 1.42 100 % X ANE SPECIFIED. UND. SOMMERFELD : IELECTRIC CONST.= 1TY= 3.000E-03 MHOS IELECTRIC CONSTAN	Series comp. Parallel comp. Input power Structure loss Network loss Radiat-power Loads SOLUTION 4.000 /METER T = 4.00000E+00-3.	1.e-3 uH 537.5 uH 100 W 0 uW 100 W Polar 85200E+00
Comment			
Pattern lines Freq/Eval step Calculation tim	s 41 1517 ps 41 ne 12.496 s	Theta -90 9 Phi 261 26	0 37 5 1 1 0

Dipol 14 MHz - 2 x 5,2 m - 100 W

Horizontal (x - y) bei Z = 10m, in 3m Abstand 13,39 V/m

Horizontal (x) bei Z = 10m, in 2m Abstand 25,49 V/m

Dipol 14 MHz - 2 x 5,2 m - 100 W

GPA 14 MHz - 750 W

Bei 6 m Abstand < 28 V/m

GPA 28 MHz - 750 W

Bei 7,5 m Abstand < 28 V/m

Dipol 3,6 MHz - 750 W

Dipol 3,6 MHz - 750 W

Abstand 3,5 m < 20 V/m

Dipol 3,6 MHz - 750 W

55 | 20.04.2025

Dipol 14 MHz - 100 W

Einhüllung mit BEMfV - 4 - NEC2

DL1SMF

57 | 20.04.2025

EMV

EZNEC Pro/2 ver. 6.0

Dipole 20m Lambda Halbe

12.03.2025 16:31:27

----- NEAR-FIELD PATTERN DATA -----

Frequency = 14,1 MHz Power = 100 watts Max field = 61,3716 V/m RMS at X,Y,Z = 1, 1, 10 m

Grenzwert 28 V / m

Electric (E) Field (V/m RMS)

X (m)) Y (m)	Z (m)	Ex Mag	Ey Mag	Ez Mag	Etot
1	0	10	37,9909	31,1996	0,51663	49,1629
1	1	10	58,296	19,1797	0,432748	61,3716
1	2	10	53,8049	12,303	0,339132	55,1946
1	3	10	40,7602	11,696	0,237768	42,4057
1		10	23,5809	13,2012	0,13111	27,0249
1	5	10	4,07777	15,3844	0,0219168	15,9156

Electric (E) Field (V/m RMS)

X (m)	Y (m)	Z (m)	Ex Mag	Ey Mag	Ez Mag	Etot
5	0	10	6,57199	6,70601	0,475788	9,40149
5	1	10	6,68369	7,71025	0,399255	10,2117
5	2	10	6,09819	8,73553	0,313682	10,6581
5	3	10	4,76486	9,64802	0,220696	10,7628
5	4	10	2,81032	10,303	0,122183	10,6801
5	5	10	0,48339	10,5923	0,0205489	10,6033

Nahfeldberechnung mit EZNEC - Dipol 2 x 5m

Nahfeldberechnung mit EZNEC - Dipol 2 x 5m

Besten Dank für die Aufmerksamkeit

