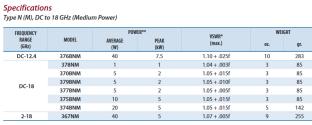
Narda 40W Termination DC - 12,4 GHz

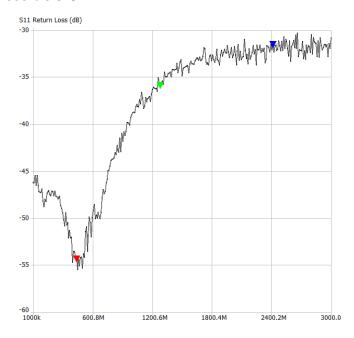
Wilhelm, DL6DCA 23.01.2021

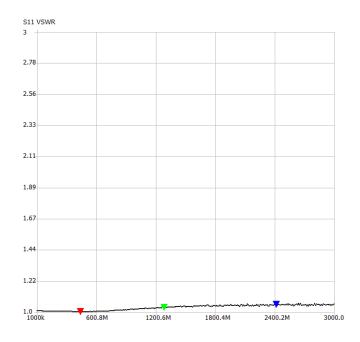

Irgendjemand hat mal den Spruch getätigt: Dummyloads oder Abschlusswiderstände kann man nie genug haben. Recht hat er! Wenn man, so wie Benedikt und ich, gerne den Amateurfunkgeräten und dem Zubehör messtechnisch zu Leibe rücken will, kommt man um geeignete Abschlüsse nicht herum. Unser Messpark war diesbezüglich nur bis 8,5 GHz ausgestattet und da lag es nahe, ein günstiges Angebot in Form eines 40 W Abschlusswiderstandes der Firma Narda anzunehmen. Weshalb nur 40 W? Größere Leistungsabschlüsse werden jenseits der 8 GHz Grenze kaum angeboten und wenn ja, dann zu sehr hohen Preisen. Auch wird so schnell keine Leistung von 40 W in diesem Bereich auf unserem Basteltisch landen.

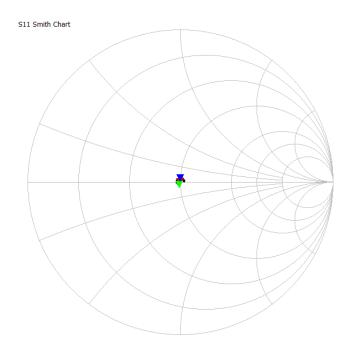
Natürlich wurde nach Erhalt sofort einmal eine Kontrollmessung gemacht. Zum Einsatz kam wieder NanoVNA V2 mit SW NanoVNA-Saver, Sucoflex 100 Kabel und Kalibrierung mit SOLT von Chauvin Arnoux.

Eine Kontrollmessung mit Anritsu SideMaster S251C ergab im Frequenzbereich von 625 MHz – 2,6 GHz gleiche Ergebnisse.

Von 3 GHz – 13 GHz wurde mittels hp8673M Messsender, Midwest Microwave Directional Coupler 0,5 – 18 GHz und hp436A Power Meter mit hp8481A Power Sensor festgestellt, dass die von Narda angegebenen Werte eingehalten bzw. noch besser sind.


Die Firma Narda gibt in einem Prospekt folgende Daten an:





Meine Messergebnisse bis 3 GHz:

Marker 1			
Frequency:	437.940 MHz	VSWR:	1.004
Impedance:	50+j191m Ω	Return loss:	-54.353 dB
Series L:	69.256 pH	Quality factor:	0.004
Series C:	-1.907 nF	S11 Phase:	83.91°
Parallel R:	50.021 Ω	S21 Gain:	-90.313 dB
Parallel X:	4.7714 µH	S21 Phase:	46.07°
Marker 2			
Frequency:	1.28203 GHz	VSWR:	1.032
Impedance:	49.3-j1.43 Ω	Return loss:	-35.939 dB
Series L:	-176.96 pH	Quality factor:	0.029
Series C:	87.089 pF	S11 Phase:	-115.12°
Parallel R:	49.348 Ω	S21 Gain:	-86.352 dB
Parallel X:	72.729 fF	S21 Phase:	-63.11°
Marker 3			
Frequency:	2.41410 GHz	VSWR:	1.054
Impedance:	50+j2.64 Ω	Return loss:	-31.559 dB
Series L:	174.31 pH	Quality factor:	0.053
Series C:	-24.935 pF	S11 Phase:	88.13°
Parallel R:	50.156 Ω	S21 Gain:	-83.474 dB
Parallel X:	62,553 nH	S21 Phase:	122.30°

Werte von 2 – 12 GHz wie vor angegeben händisch ermittelt:

Frequenz GHz	SWR-Hersteller	SWR gemessen
2	1,150	1,040
3	1,175	1,060
4	1,200	1,140
5	1,225	1,170
6	1,250	1,220
7	1,275	1,250
8	1,300	1,270
9	1,325	1,300
10	1,350	1,310
11	1,375	1,350
12	1,400	1,320

Summarisch ist festzuhalten, dass die Herstellerangaben eingehalten bzw. noch besser sind.

Über Rückfragen, Anmerkungen, Verbesserungsvorschläge würde ich mich freuen.

Kontakt bitte per Mail <u>dl6dca@darc.de</u> oder Ortsfrequenz 144,575 MHz.

vy 73 Wilhelm, DL6DCA